Notice for TAIYO YUDEN Products

[For High Quality and/or Reliability Equipment (Automotive / Industrial Equipment)]

Please read this notice before using the TAIYO YUDEN products.

I REMINDERS

Product information in this catalog is as of October 2017. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

- Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available.
- Please conduct validation and verification of our products in actual condition of mounting and operating environment before using our products.
- The products listed in this catalog are intended for use in general electronic equipment (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment), medical equipment classified as Class I or II by IMDRF, industrial equipment, and automotive interior applications, etc. Please be sure to contact TAIYO YUDEN for further information before using the products for any equipment which may directly cause loss of human life or bodily injury (e.g., transportation equipment including, without limitation, automotive powertrain control system, train control system, and ship control system, traffic signal equipment, medical equipment classified as Class III by IMDRF).

Please do not incorporate our products into any equipment requiring high levels of safety and/or reliability (e.g., aerospace equipment, aviation equipment*, medical equipment classified as Class IV by IMDRF, nuclear control equipment, undersea equipment, military equipment).

*Note: There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.

When our products are used even for high safety and/or reliability-required devices or circuits of general electronic equipment, it is strongly recommended to perform a thorough safety evaluation prior to use of our products and to install a protection circuit as necessary.

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

- Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.
- Please note that the scope of warranty for our products is limited to the delivered our products themselves and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a fault or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement.
- The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.

Caution for Export

Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.

MULTILAYER CERAMIC CAPACITORS

PART NUMBER

J	М	Κ	3	1	6	\triangle	В	J	1	0	6	М	L	Н	Т	\triangle
1	2	3		4		5	(5)		\bigcirc		8	9	(10)	1	(12)

 $\Delta =$ Blank space

①Rated voltage

Code	Rated voltage[VDC]
A	4
J	6.3
L	10
E	16
Т	25
G	35
U	50
Н	100
Q	250
S	630

2 Series name

E Contoo name	
Code	Series name
М	Multilayer ceramic capacitor
V	Multilayer ceramic capacitor for high frequency
W	LW reverse type multilayer capacitor
	·

③End termination						
Code End termination						
К	Plated					
J	Soft Termination					
S	Cu Internal Electrodes					
F	High Reliability Application					

 $(\widehat{4})$ Dimension(L × W)

-Dimension(L)	• • • •	
Туре	Dimensions (L×W)[mm]	EIA (inch)
063	0.6 × 0.3	0201
105	1.0 × 0.5	0402
105	0.52× 1.0 💥	0204
107	1.6 × 0.8	0603
107	0.8 × 1.6 💥	0306
010	2.0 × 1.25	0805
212	1.25 × 2.0 💥	0508
316	3.2 × 1.6	1206
325	3.2 × 2.5	1210
432	4.5 × 3.2	1812

Note : XLW reverse type(DWK) only

Code	Туре	L[mm]	W[mm]	T[mm]
Δ	ALL	Standard	Standard	Standard
	063	0.6±0.05	0.3±0.05	0.3 ± 0.05
	105	1.0±0.10	0.5±0.10	0.5±0.10
A	107	1.6+0.15/-0.05	0.8+0.15/-0.05	0.8+0.15/-0.05
	010	201015/ 005	1.25+0.15/-0.05	0.85±0.10
	212	2.0+0.15/-0.05	1.25+0.15/-0.05	1.25+0.15/-0.05
	316	3.2 ± 0.20	1.6±0.20	1.6±0.20
	325	3.2±0.30	2.5±0.30	2.5±0.30
-	105	1.0+0.15/-0.05	0.5+0.15/-0.05	0.5+0.15/-0.05
	107	1.6+0.20/-0	0.8+0.20/-0	0.8+0.20/-0
В	212	2.0+0.20/-0	1.25+0.20/-0	0.85±0.10
		2.0+0.20/-0	1.25+0.20/-0	1.25+0.20/-0
	316	3.2±0.30	1.6±0.30	1.6±0.30
	105	1.0+0.20/-0	0.5+0.20/-0	0.5+0.20/-0
С	107	1.6+0.25/-0	0.8+0.25/-0	0.8+0.25/-0
	212	2.0+0.25/-0	1.25+0.25/-0	1.25+0.25/-0
	212	2.0±0.15	1.25±0.15	0.85±0.15
K	316	2.2 + 0.20	16+020	1.15±0.20
К	310	3.2 ± 0.20	1.6 ± 0.20	1.6±0.20
	325	3.2±0.50	2.5±0.30	2.5±0.30

Note: cf. STANDARD EXTERNAL DIMENSIONS

 Δ = Blank space

6 Temperature characteristics code

High dielectric type

Code	Applicable standard		Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code														
BJ	EIA	IA X5R	$-55 \sim + 85$	25	±15%	±10%	К														
60	EIA		$-55 \sim + 85$	25	1370	±20%	М														
C6	EIA	X6S	Vec	Vec	Vec	Vec	Xec	$-55 \sim +105$	25	±22%	±10%	К									
0			-55** + 105	25	±22%	±20%	М														
B7	EIA	X7R	VZD	VZD			VZD	$-55 \sim +125$	25	±15%	±10%	К									
в/			-55-9 + 125	25	10%	±20%	М														
07		¥70	¥70	¥70	¥70	¥70	¥70	¥70	¥70	¥70	2/70	¥70	VIO	VIO	VIO	X7S	FF . 1 10F	05	1.000/	±10%	К
C7	EIA	\$/5	$-55 \sim +125$	25	±22%	±20%	М														
D7	EIA X	IA X7T	V7T	V7T	¥77	VIT	VIT	VIT	VIT		05		±10%	К							
D7			$-55 \sim +125$	25	+22%/-33%	±20%	М														

Temperature compensating type

	ompena	acing cype	, ,											
Code	Applicable standard		Temperature	Ref. Temp.[°C]	Capacitance change	Capacitance	Tolerance							
oode			range[°C]			tolerance	code							
	JIS	G CG		20		±0.1pF	В							
						±0.25pF	С							
CG			$-55 \sim +125$		0±30ppm/°C	$\pm 0.5 pF$	D							
CG		EIA COG	$-55 \sim +125$	25	0±30ppm/C	±1pF	F							
	EIA		i			±2%	G							
						±5%	J							

⑦Nominal capacitance

Code (example)	Nominal capacitance							
0R5	0.5pF							
010	1pF							
100	10pF							
101	100pF							
102	1,000pF							
103	0.01 <i>µ</i> F							
104	0.1 µF							
105	1.0 µF							
106	10 µF							
107	100 <i>µ</i> F							
Note : R=Decimal point								

(9) Thickness Code Thickness[mm] Ρ 0.3 Т 0.5 V С 0.7(107type or more) А 0.8 D 0.85(212type or more) F 1.15 G 1.25 L 1.6 1.9 Ν М 2.5

8 Capacitance tolerance Code Capacitance tolerance В $\pm 0.1 pF$ С $\pm 0.25 pF$ $\pm 0.5 pF$ D G ±2% ±5% J Κ ±10% М ±20%

Н	MLCC for Industrial and Automotive					
	· ·					
①Packaging						
Code	Packaging					
F	ϕ 178mm Taping (2mm pitch)					
R	ϕ 178mm Embossed Taping (4mm pitch)					
Т	ϕ 178mm Taping (4mm pitch)					
Р	ϕ 178mm Taping (4mm pitch, 1000 pcs/reel)					

325 type(Thickness code M)

Special code

12Internal code

①Special code

Code

Winternal code							
Code	Internal code						
Δ	Standard						

※ LW reverse type

T (T)		Dime	nsion [mm] (inch)				
Type(EIA)	L	W	Т	*1	е		
□MK063(0201)	0.6±0.03 (0.024±0.001)	0.3±0.03 (0.012±0.001)	0.3±0.03 (0.012±0.001)	т	0.15±0.05 (0.006±0.002)		
□MK105(0402) □MF105(0402)	1.0 ± 0.05 (0.039 ± 0.002)	0.5 ± 0.05 (0.020 ± 0.002)	0.5 ± 0.05 (0.020 ± 0.002)	v	0.25±0.10 (0.010±0.004)		
□WK105(0204)※	0.52 ± 0.05 (0.020 ± 0.002)	1.0 ± 0.05 (0.039 ± 0.002)	0.3 ± 0.05 (0.012 \pm 0.002)	Р	0.18 ± 0.08 (0.007 ± 0.003)		
□MK107(0603) □MF107(0603)	1.6 ± 0.10 (0.063 ± 0.004)	$\frac{0.8 \pm 0.10}{(0.031 \pm 0.004)}$	$\begin{array}{c} 0.8 \pm 0.10 \\ (0.031 \pm 0.004) \end{array}$	А	$\begin{array}{c} 0.35 \pm 0.25 \\ (0.014 \pm 0.010) \end{array}$		
□MJ107(0603)	1.6 ± 0.10 (0.063 ± 0.004)	0.8 ± 0.10 (0.031 ± 0.004)	$\begin{array}{c} 0.8 \pm 0.10 \\ (0.031 \pm 0.004) \end{array}$	А	0.35+0.3/-0.25 (0.014+0.012/-0.010)		
□VS107(0603)	1.6 ± 0.10 (0.063 ± 0.004)	0.8 ± 0.10 (0.031 ± 0.004)	0.7±0.10 (0.028±0.004)	с	$\begin{array}{c} 0.35 \pm 0.25 \\ (0.014 \pm 0.010) \end{array}$		
□WK107(0306)※	0.8 ± 0.10 (0.031 ± 0.004)	1.6 ± 0.10 (0.063 ± 0.004)	0.5 ± 0.05 (0.020 ± 0.002)	V	0.25 ± 0.15 (0.010 ± 0.006)		
□MK212(0805)	2.0±0.10	1.25±0.10	0.85±0.10 (0.033±0.004)	D	0.5±0.25		
□MF212(0805)	(0.079 ± 0.004)	(0.049±0.004)	1.25 ± 0.10 (0.049 ± 0.004)	G	(0.020±0.010)		
	2.0±0.10	1.25±0.10	0.85±0.10 (0.033±0.004)	D	0.5+0.35/-0.25		
□MJ212(0805)	(0.079 ± 0.004)	(0.049±0.004)	1.25 ± 0.10 (0.049 ± 0.004)	G	(0.020+0.014/-0.010)		
□VS212(0805)	2.0±0.10 (0.079±0.004)	1.25 ± 0.10 (0.049 ± 0.004)	0.85±0.10 (0.033±0.004)	D	0.5 ± 0.25 (0.020 ± 0.010)		
□WK212(0508)※	1.25±0.15 (0.049±0.006)	2.0±0.15 (0.079±0.006)	0.85±0.10 (0.033±0.004)	D	0.3±0.2 (0.012±0.008)		
□MK316(1206)	3.2±0.15	1.6±0.15	1.15±0.10 (0.045±0.004)	F	0.5+0.35/-0.25 (0.020+0.014/-0.010)		
□MF316(1206)	(0.126 ± 0.006)	(0.063±0.006)	1.6±0.20 (0.063±0.008)	L			
	3.2±0.15	1.6±0.15	1.15±0.10 (0.045±0.004)	F	0.6+0.4/-0.3		
□MJ316(1206)	(0.126±0.006)	(0.063±0.006)	1.6±0.20 (0.063±0.008)	L	(0.024+0.016/-0.012)		
			1.15±0.10 (0.045±0.004)	F			
□MK325(1210) □MF325(1210)	3.2 ± 0.30 (0.126 ± 0.012)	2.5±0.20 (0.098±0.008)	1.9±0.20 (0.075±0.008)	Ν	0.6±0.3 (0.024±0.012)		
			2.5±0.20 (0.098±0.008)	М			
□MJ325(1210)	3.2±0.30	2.5±0.20	1.9±0.20 (0.075±0.008)	Ν	0.6+0.4/-0.3		
	(0.126±0.012)	(0.098±0.008)	2.5±0.20 (0.098±0.008)	М	(0.024+0.016/-0.012)		
□MK432(1812)	4.5±0.40 (0.177±0.016)	3.2±0.30 (0.126±0.012)	2.5±0.20 (0.098±0.008)	М	0.9±0.6 (0.035±0.024)		
Note : ※. LW reverse type, *1.Thickness code							

STANDARD QUANTITY

Туре	EIA (inch)	Dime	nsion	Standard qu	uantity[pcs]
туре	EIA (Inch)	[mm]	Code	Paper tape	Embossed tape
063	0201	0.3	Т	15000	-
105	0402	0.5	V	10000	
105	0204 💥	0.30	Р	10000	_
		0.7	С	4000	_
		0.8	A	4000	_
107	0603	0.8	A	3000 (Soft Termination)	-
		0.8	А	-	3000 (Soft Termination
	0306 💥	0.50	V	-	4000
		0.85	D	4000	_
	0005	1.25	G	-	3000
212	0805 —	1.25	G	-	2000 (Soft Termination
	0508 💥	0.85	D	4000	-
010	1000	1.15	F	-	3000
316	1206	1.6	L	-	2000
		1.15	F		0000
325	1210	1.9	Ν		2000
		2.5	М	-	500(T), 1000(P)
432	1812	2.5	М	_	500

- All the Multilayer Ceramic Capacitors of the catalog lineup are RoHS compliant.
- Capacitance tolerance code is applied to [] of part number.
- $\boldsymbol{\cdot}$ All the Multilayer Ceramic Capacitors in the catalog lineup are applicable for reflow-soldering.

Note)

- The exchange of individual specifications is necessary depending on the application and circuit condition. Please contact Taiyo Yuden sales channels.
- *1: Automotive (AEC-Q200 Qualified) products
- < AEC-Q200 :AEC-Q200 qualified>

All the Multilayer Ceramic Capacitors of *1 marks are tested based on the test conditions and methods defined in AEC-Q200 by family item. 125°C products: AEC-Q200 Grade1 (we conduct the evaluation at the test condition of Grade1.)

- 105°C products: AEC-Q200 Grade2 (we conduct the evaluation at the test condition of Grade2.)
- 85°C products: AEC-Q200 Grade3 (we conduct the evaluation at the test condition of Grade3.)
- Please consult with TAIYO YUDEN's official sales channel for the details of the product specification and AEC-Q200 test results, etc.,

and please review and approve TAIYO YUDEN's product specification before ordering.

• *2: Industrial products and Medical products

• *3: For standard case size, please kindly refer to @Dimension, @Dimension tolerance, @Thickness and STANDARD EXTERNAL DIMENSIONS.

Multilayer Ceramic Capacitors (High dielectric type)

• 105TYPE (Demension:1.0 × 0.5mm JIS:1005 EIA:0402) [Temperature Characteristic BJ : X5R] 0.5mm thickness(V)

Temperature Characteris	TIC BJ : XOR U.SMM TH	ckness(V)							
Part number 1	Part number 2	Rated voltage	Temperature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
		[V]	characteristics	[F]	tolerance [%]	[%]	Rated voltage x %	Lineral Contraction	
UMK105 BJ102 VHF			X5R	1000 p	±10, ±20	2.5	200	0.5 ± 0.05	*1, *2
UMK105 BJ152 VHF			X5R	1500 p	±10, ±20	2.5	200	0.5 ± 0.05	*1, *2
UMK105 BJ222 VHF			X5R	2200 p	±10, ±20	2.5	200	0.5 ± 0.05	*1, *2
UMK105 BJ332 VHF			X5R	3300 p	±10, ±20	2.5	200	0.5 ± 0.05	*1, *2
UMK105 BJ472 VHF		50	X5R	4700 p	±10, ±20	2.5	200	0.5 ± 0.05	*1, *2
UMK105 BJ682 VHF		50	X5R	6800 p	±10, ±20	2.5	150	0.5 ± 0.05	*1, *2
UMK105 BJ103 VHF			X5R	0.01 µ	±10, ±20	3.5	200	0.5 ± 0.05	*1, *2
UMK105 BJ223 VHF			X5R	0.022 µ	±10, ±20	5	200	0.5 ± 0.05	*1, *2
UMK105 BJ473 VHF			X5R	0.047 μ	±10, ±20	5	200	0.5 ± 0.05	*1, *2
UMK105 BJ104 VHF			X5R	0.1 μ	±10, ±20	10	150	0.5 ± 0.05	*1, *2
TMK105 BJ472 VHF			X5R	4700 p	±10, ±20	2.5	200	0.5 ± 0.05	*1, *2
TMK105 BJ682[]VHF			X5R	6800 p	±10, ±20	2.5	200	0.5 ± 0.05	*1, *2
TMK105 BJ103[]VHF			X5R	0.01 µ	±10, ±20	3.5	200	0.5 ± 0.05	*1, *2
TMK105 BJ223 VHF		25	X5R	0.022 µ	±10, ±20	3.5	200	0.5 ± 0.05	*1, *2
TMK105 BJ473 VHF		25	X5R	0.047 μ	±10, ±20	3.5	150	0.5 ± 0.05	*1, *2
TMK105 BJ104 VHF			X5R	0.1 μ	±10, ±20	5	150	0.5 ± 0.05	*1, *2
TMK105 BJ224 VHF			X5R	0.22 μ	±10, ±20	10	150	0.5 ± 0.05	*1, *2
TMK105ABJ474 VHF			X5R	0.47 μ	±10, ±20	10	150	0.5 ± 0.10	*1, *2
EMK105 BJ103 VHF			X5R	0.01 µ	±10, ±20	3.5	200	0.5 ± 0.05	*1, *2
EMK105 BJ223 VHF			X5R	0.022 μ	±10, ±20	3.5	200	0.5 ± 0.05	*1, *2
EMK105 BJ473[]VHF			X5R	0.047 μ	±10, ±20	3.5	150	0.5 ± 0.05	*1, *2
EMK105 BJ104 VHF		16	X5R	0.1 μ	±10, ±20	5	150	0.5 ± 0.05	*1, *2
EMK105 BJ224 VHF			X5R	0.22 μ	±10, ±20	10	150	0.5 ± 0.05	*1, *2
EMK105ABJ474[]VHF			X5R	0.47 μ	±10, ±20	10	150	0.5 ± 0.10	*1, *2
EMK105 BJ105 VHF			X5R	1 μ	±10, ±20	10	150	0.5 ± 0.05	*1, *2
LMK105 BJ473 VHF			X5R	0.047 μ	±10, ±20	3.5	150	0.5 ± 0.05	*1, *2
LMK105 BJ104 VHF			X5R	0.1 μ	±10, ±20	5	150	0.5 ± 0.05	*1, *2
LMK105 BJ224[]VHF		10	X5R	0.22 μ	±10, ±20	5	150	0.5 ± 0.05	*1, *2
LMK105ABJ474[]VHF		10	X5R	0.47 μ	±10, ±20	10	150	0.5±0.10	*1, *2
LMK105 BJ105[]VHF			X5R	1 μ	±10, ±20	10	150	0.5 ± 0.05	*1, *2
LMK105ABJ225[]VHF			X5R	2.2 μ	±10, ±20	10	150	0.5±0.10	*1, *2
JMK105 BJ104[]VHF			X5R	0.1 μ	±10, ±20	5	150	0.5 ± 0.05	*1, *2
JMK105 BJ224 VHF			X5R	0.22 μ	±10, ±20	5	150	0.5 ± 0.05	*1, *2
JMK105 BJ474[]VHF		6.3	X5R	0.47 μ	±10, ±20	10	150	0.5 ± 0.05	*1, *2
JMK105 BJ105[]VHF		0.0	X5R	1 μ	±10, ±20	10	150	0.5 ± 0.05	*1, *2
JMK105 BJ225[]VHF			X5R	2.2 μ	±10, ±20	10	150	0.5 ± 0.05	*1, *2
JMK105BBJ475MVHF			X5R	4.7 μ	±20	10	150	0.5+0.15/-0.05	*1, *2
AMK105 BJ225[]VHF			X5R	2.2 μ	±10, ±20	10	150	0.5 ± 0.05	*1, *2
AMK105BBJ475MVHF		4	X5R	4.7 μ	±20	10	150	0.5+0.15/-0.05	*1, *2
AMK105CBJ106MVHF			X5R	10 µ	±20	10	150	0.5+0.20/-0	*1, *2

[Temperature Characteristic B7 : X7R] 0.5mm thickness(V)

Part number 1	Part number 2	Rated voltage	Tempera	ature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Part number 1	Part number 2	[V]	character	ristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
UMK105 B7102 VHF				X7R	1000 p	±10, ±20	2.5	200	0.5 ± 0.05	*1, *2
UMK105 B7152 UHF				X7R	1500 p	±10, ±20	2.5	200	0.5 ± 0.05	*1, *2
UMK105 B7222 UHF				X7R	2200 p	±10, ±20	2.5	200	0.5 ± 0.05	*1, *2
UMK105 B7332 UHF				X7R	3300 p	±10, ±20	2.5	200	0.5 ± 0.05	*1, *2
UMK105 B7472 UHF		50		X7R	4700 p	±10, ±20	2.5	150	0.5 ± 0.05	*1, *2
UMK105 B7682[]VHF		50		X7R	6800 p	±10, ±20	2.5	150	0.5 ± 0.05	*1, *2
UMK105 B7103[]VHF				X7R	0.01 µ	±10, ±20	3.5	150	0.5 ± 0.05	*1, *2
UMK105 B7223 UHF				X7R	0.022 µ	±10, ±20	10	200	0.5 ± 0.05	*1, *2
UMK105 B7473 UHF				X7R	0.047 μ	±10, ±20	10	200	0.5 ± 0.05	*1, *2
UMK105 B7104[]VHF				X7R	0.1 μ	±10, ±20	10	150	0.5 ± 0.05	*1, *2
TMK105 B7472[]VHF				X7R	4700 p	±10, ±20	2.5	200	0.5 ± 0.05	*1, *2
TMK105 B7682[]VHF				X7R	6800 p	±10, ±20	2.5	200	0.5 ± 0.05	*1, *2
TMK105 B7103[]VHF		25		X7R	0.01 µ	±10, ±20	3.5	200	0.5 ± 0.05	*1, *2
TMK105 B7223[]VHF		25		X7R	0.022 µ	±10, ±20	3.5	150	0.5 ± 0.05	*1, *2
TMK105 B7473[]VHF				X7R	0.047 μ	±10, ±20	3.5	150	0.5 ± 0.05	*1, *2
TMK105 B7104[]VHF				X7R	0.1 μ	±10, ±20	10	150	0.5 ± 0.05	*1, *2
EMK105 B7103[]VHF				X7R	0.01 µ	±10, ±20	3.5	200	0.5 ± 0.05	*1, *2
EMK105 B7223[]VHF				X7R	0.022 µ	±10, ±20	3.5	150	0.5 ± 0.05	*1, *2
EMK105 B7473[]VHF		16		X7R	0.047 μ	±10, ±20	3.5	150	0.5 ± 0.05	*1, *2
EMK105 B7104[]VHF]		X7R	0.1 μ	±10, ±20	5	150	0.5 ± 0.05	*1, *2
EMK105 B7224[]VHF				X7R	0.22 µ	±10, ±20	10	150	0.5 ± 0.05	*1, *2

PART NUMBER

Part number 1	Part number 2	Rated voltage			Capacitance	Capacitance	tan ô	HTLT	Thickness ^{*3} [mm]	Note
Fart number i	Fart number 2	[V]	characte	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Trickriess [mm]	NOLE
LMK105 B7473 VHF				X7R	0.047 μ	±10, ±20	3.5	150	0.5 ± 0.05	*1, *2
LMK105 B7104[]VHF		10		X7R	0.1 μ	±10, ±20	5	150	0.5 ± 0.05	*1, *2
LMK105 B7224[]VHF				X7R	0.22 μ	±10, ±20	10	150	0.5 ± 0.05	*1, *2
JMK105 B7104[]VHF				X7R	0.1 μ	±10, ±20	5	150	0.5 ± 0.05	*1, *2
JMK105 B7224 UHF		6.3		X7R	0.22 μ	±10, ±20	10	150	0.5 ± 0.05	*1, *2
JMK105 B7474 VHF				X7R	0.47 μ	±10, ±20	10	150	0.5 ± 0.05	*1, *2
AMK105 B7474[]VHF		4		X7R	0.47 μ	±10, ±20	10	150	0.5 ± 0.05	*1, *2

107TYPE (Dimension:1.6 × 0.8mm JIS:1608 EIA:0603)

Part number 1	Part number 2	Rated voltage	Temperature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Part number 1	Part number 2	[V]	characteristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
IMK107 BJ104[]AHT			X5R	0.1 μ	±10, ±20	3.5	150	0.8±0.10	*1, *2
MK107 BJ224[]AHT		50	X5R	0.22 μ	±10, ±20	10	150	0.8±0.10	*1, *2
MK107 BJ474[]AHT		50	X5R	0.47 μ	±10, ±20	10	150	0.8±0.10	*1, *2
MK107ABJ105[AHT			X5R	1μ	±10, ±20	10	150	0.8+0.15/-0.05	*1, *2
MK107 BJ223[]AHT			X5R	0.022 μ	±10, ±20	2.5	200	0.8±0.10	*1, *2
MK107 BJ473[]AHT			X5R	0.047 μ	±10, ±20	3.5	200	0.8±0.10	*1, *2
MK107 BJ104[]AHT		35	X5R	0.1 μ	±10, ±20	3.5	150	0.8±0.10	*1, *2
MK107 BJ224[]AHT		35	X5R	0.22 μ	$\pm 10, \pm 20$	10	150	0.8±0.10	*1, *2
MK107ABJ474[]AHT			X5R	0.47 μ	±10, ±20	10	150	0.8+0.15/-0.05	*1, *2
MK107 BJ105[]AHT			X5R	1μ	±10, ±20	10	150	0.8±0.10	*1, *2
MK107 BJ223[]AHT			X5R	0.022 μ	±10, ±20	2.5	200	0.8±0.10	*1, *2
MK107 BJ473[]AHT			X5R	0.047 μ	±10, ±20	3.5	200	0.8±0.10	*1, *:
/K107 BJ104[]AHT			X5R	0.1 μ	±10, ±20	3.5	150	0.8±0.10	*1, *
/K107 BJ224[]AHT		25	X5R	0.22 μ	±10, ±20	5	150	0.8±0.10	*1, *
/K107 BJ474[]AHT			X5R	0.47 μ	±10, ±20	3.5	150	0.8±0.10	*1, *
/K107 BJ105[AHT			X5R	1 μ	±10, ±20	10	150	0.8±0.10	*1, *
MK107BBJ225[]AHT			X5R	2.2 μ	±10, ±20	10	150	0.8+0.20/-0	*1, *
/K107 BJ104[AHT			X5R	0.1 μ	±10, ±20	3.5	150	0.8±0.10	*1, *
MK107 BJ224[]AHT			X5R	0.22 μ	±10, ±20	5	150	0.8±0.10	*1, *
MK107 BJ474[]AHT		16	X5R	0.47 μ	±10, ±20	3.5	150	0.8±0.10	*1, *
VK107 BJ105[]AHT		10	X5R	1 μ	±10, ±20	5	150	0.8±0.10	*1, *:
VK107ABJ225[]AHT			X5R	2.2 μ	±10, ±20	10	150	0.8+0.15/-0.05	*1, *
MK107BBJ475[]AHT			X5R	4.7 μ	±10, ±20	10	150	0.8+0.20/-0	*1, *:
/K107 BJ474[]AHT			X5R	0.47 μ	±10, ±20	3.5	150	0.8±0.10	*1, *
MK107 BJ105[]AHT			X5R	1μ	±10, ±20	5	150	0.8±0.10	*1, *:
/K107 BJ225[]AHT		10	X5R	2.2 μ	±10, ±20	10	150	0.8±0.10	*1, *:
/K107 BJ475[]AHT			X5R	4.7 μ	±10, ±20	10	150	0.8±0.10	*1, *
/K107BBJ106MAHT			X5R	10 µ	±20	10	150	0.8+0.20/-0	*1, *
/K107 BJ105[]AHT			X5R	1μ	±10, ±20	5	150	0.8±0.10	*1, *
/K107 BJ225[]AHT		6.3	X5R	2.2 μ	±10, ±20	10	150	0.8±0.10	*1, *:
/K107 BJ475[]AHT		0.5	X5R	4.7 μ	±10, ±20	10	150	0.8±0.10	*1, *
/K107ABJ106[]AHT			X5R	10 µ	±10, ±20	10	150	0.8+0.15/-0.05	*1, *
MK107ABJ106[]AHT		4	X5R	10 µ	±10, ±20	10	150	0.8+0.15/-0.05	*1, *
MK107BBJ226MAHT		4	X5R	22 μ	±20	10	150	0.8+0.20/-0	*1, *;

Part number 1	Part number 2	Rated voltage	Temperature	Capacitance	Capacitance	tan δ	HTLT		Note
Part number 1	Part number 2	[V]	characteristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness ^{*3} [mm]	Note
UMK107 B7102[]AHT			X7R	1000 p	±10, ±20	3.5	200	0.8±0.10	*1, *2
UMK107 B7152[]AHT			X7R	1500 p	±10, ±20	3.5	200	0.8±0.10	*1, *2
UMK107 B7222[]AHT			X7R	2200 p	±10, ±20	3.5	200	0.8±0.10	*1, *2
UMK107 B7332[]AHT			X7R	3300 p	±10, ±20	3.5	200	0.8±0.10	*1, *2
UMK107 B7472[]AHT			X7R	4700 p	±10, ±20	3.5	200	0.8±0.10	*1, *2
UMK107 B7682[]AHT		50	X7R	6800 p	±10, ±20	3.5	200	0.8±0.10	*1, *2
UMK107 B7103[AHT			X7R	0.01 µ	±10, ±20	3.5	200	0.8±0.10	*1, *2
UMK107 B7223[]AHT			X7R	0.022 μ	±10, ±20	3.5	200	0.8±0.10	*1, *2
UMK107 B7473[AHT			X7R	0.047 μ	±10, ±20	3.5	200	0.8±0.10	*1, *2
UMK107 B7104[]AHT			X7R	0.1 μ	±10, ±20	3.5	200	0.8±0.10	*1, *2
UMK107 C7224[]AHTE			X7S	0.22 μ	±10, ±20	3.5	150	0.8±0.10	*1, *2
GMK107 B7473[]AHT			X7R	0.047 μ	±10, ±20	3.5	200	0.8±0.10	*1, *2
GMK107 B7104[]AHT			X7R	0.1 μ	±10, ±20	3.5	150	0.8±0.10	*1, *2
GMK107 B7224[]AHT		35	X7R	0.22 μ	±10, ±20	10	150	0.8±0.10	*1, *2
GMK107 B7474[]AHT			X7R	0.47 μ	±10, ±20	10	150	0.8±0.10	*1, *2
GMK107AB7105[]AHT			X7R	1 μ	±10, ±20	10	150	0.8+0.15/-0.05	*1, *2
TMK107 B7223[]AHT			X7R	0.022 µ	±10, ±20	2.5	200	0.8±0.10	*1, *2
TMK107 B7473[]AHT			X7R	0.047 μ	±10, ±20	3.5	200	0.8±0.10	*1, *2
TMK107 B7104[]AHT		25	X7R	0.1 μ	±10, ±20	3.5	150	0.8±0.10	*1, *2
TMK107 B7224[]AHT		20	X7R	0.22 μ	±10, ±20	10	150	0.8±0.10	*1, *2
TMK107 B7474[]AHT			X7R	0.47 μ	±10, ±20	10	150	0.8±0.10	*1, *2
TMK107AB7105[AHT			X7R	1μ	±10, ±20	10	150	0.8+0.15/-0.05	*1, *2
EMK107 B7473[]AHT			X7R	0.047 μ	±10, ±20	3.5	200	0.8±0.10	*1, *2
EMK107 B7104[]AHT			X7R	0.1 μ	±10, ±20	3.5	150	0.8±0.10	*1, *2
EMK107 B7224[]AHT		16	X7R	0.22 μ	±10, ±20	5	150	0.8±0.10	*1, *2
EMK107 B7474[]AHT			X7R	0.47 μ	±10, ±20	10	150	0.8±0.10	*1, *2
EMK107 B7105[]AHT			X7R	1 μ	±10, ±20	10	150	0.8±0.10	*1, *2
LMK107 B7224[]AHT		4	X7R	0.22 µ	±10, ±20	5	150	0.8±0.10	*1, *2
LMK107 B7474[]AHT		10	X7R	0.47 μ	±10, ±20	3.5	150	0.8±0.10	*1, *2
LMK107 B7105[]AHT		.0	X7R	1μ	±10, ±20	10	150	0.8±0.10	*1, *2
LMK107BD7225[]AHT			Х7Т	2.2 μ	±10, ±20	10	200	0.8+0.20/-0	*1, *2
JMK107 B7105[]AHT		6.3	X7R	1μ	±10, ±20	10	150	0.8±0.10	*1, *2
JMK107 B7225[]AHTR		0.0	X7R	2.2 μ	±10, ±20	10	150	0.8±0.10	*1, *2

212TYPE (Dimension:2.0 × 1.25mm JIS:2012 EIA:0805)

Part number 1	Part number 2	Rated voltage [V]	Tempera character		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
MK212 BJ104[]GHT				X5R	0.1 μ	±10, ±20	3.5	200	1.25±0.10	*1, *2
MK212 BJ224 GHT				X5R	0.22 μ	$\pm 10, \pm 20$	3.5	200	1.25±0.10	*1. *2
MK212 BJ474 GHT		50		X5R	0.47 μ	±10, ±20	3.5	150	1.25 ± 0.10	*1. *2
MK212 BJ105[]GHT				X5R	1 μ	±10, ±20	5	150	1.25 ± 0.10	*1, *2
MK212 BJ104[GHT				X5R	0.1 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1, *2
MK212 BJ224[GHT				X5R	0.22 µ	±10, ±20	3.5	150	1.25 ± 0.10	*1, *2
MK212 BJ474[GHT		35		X5R	0.47 μ	±10, ±20	3.5	150	1.25 ± 0.10	*1, *2
MK212 BJ105 GHT				X5R	1 μ	±10, ±20	5	150	1.25±0.10	*1, *2
MK212BBJ225[]GHT				X5R	2.2 μ	±10, ±20	10	150	1.25+0.20/-0	*1, *2
MK212 BJ104[]GHT				X5R	0.1 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1, *
MK212 BJ224[]GHT				X5R	0.22 μ	±10, ±20	3.5	150	1.25 ± 0.10	*1, *
MK212 BJ474[]GHT				X5R	0.47 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1, *
MK212 BJ105[]GHT		25		X5R	1μ	±10, ±20	3.5	150	1.25 ± 0.10	*1, *
MK212 BJ225[]GHT				X5R	2.2 μ	±10, ±20	5	150	1.25 ± 0.10	*1, *:
MK212BBJ475[]GHT				X5R	4.7 μ	±10, ±20	10	150	1.25+0.20/-0	*1, *2
MK212BBJ106[]GHT				X5R	10 <i>µ</i>	±10, ±20	10	150	1.25+0.20/-0	*1, *2
MK212 BJ105[]GHT				X5R	1μ	±10, ±20	3.5	150	1.25 ± 0.10	*1, *2
MK212 BJ225[]GHT		16		X5R	2.2 μ	±10, ±20	5	150	1.25 ± 0.10	*1, *2
MK212ABJ475[]GHT		10		X5R	4.7 μ	±10, ±20	10	150	1.25+0.15/-0.05	*1, *2
MK212BBJ106[]GHT				X5R	10 <i>µ</i>	±10, ±20	10	150	1.25+0.20/-0	*1, *2
MK212 BJ225[]GHT				X5R	2.2 μ	±10, ±20	5	200	1.25 ± 0.10	*1, *2
MK212ABJ475[]GHT		10		X5R	4.7 μ	±10, ±20	10	150	1.25+0.15/-0.05	*1, *2
MK212ABJ106[]GHT				X5R	10 µ	±10, ±20	10	150	1.25+0.15/-0.05	*1, *2
MK212ABJ475[]GHT				X5R	4.7 μ	±10, ±20	5	200	1.25+0.15/-0.05	*1, *
MK212ABJ106[GHT		6.3		X5R	10 µ	±10, ±20	10	150	1.25+0.15/-0.05	*1, *2
MK212BBJ226MGHT				X5R	22 µ	±20	10	150	1.25+0.20/-0	*1, *2
MK212ABJ226MGHT		4		X5R	22 µ	±20	10	150	1.25+0.15/-0.05	*1, *2
MK212BBJ476MGHT		+		X5R	47 μ	±20	10	150	1.25+0.20/-0	*1, *2

【Temperature Characteristic BJ:X5R】 0.85mm thickness(D)

Part number 1	Part number 2	Rated voltage [V]	Temperature characteristics	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
EMK212 BJ105[]DHT			X5R	1 μ	±10, ±20	5	200	0.85 ± 0.10	*1, *2
EMK212ABJ225[]DHT		16	X5R	2.2 μ	±10, ±20	5	150	0.85 ± 0.10	*1, *2
EMK212BBJ475[]DHT			X5R	4.7 μ	±10, ±20	10	150	0.85 ± 0.10	*1, *2

[Temperature Characteristic B7 : X7R] 1.25mm thickness(G)

Part number 1	Part number 2	Rated voltage	Temperature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Fart humber i	Fart number 2	[V]	characteristics	[F]	tolerance [%]	[%]	Rated voltage x %	Inickness [mm]	Note
UMK212 B7103[]GHT			X7R	0.01 µ	±10, ±20	3.5	200	1.25 ± 0.10	*1, *2
UMK212 B7223[]GHT			X7R	0.022 µ	±10, ±20	3.5	200	1.25 ± 0.10	*1, *2
UMK212 B7473[]GHT		50	X7R	0.047 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1, *2
UMK212 B7104[]GHT		50	X7R	0.1 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1, *2
UMK212 B7224[]GHT			X7R	0.22 μ	±10, ±20	3.5	150	1.25 ± 0.10	*1, *2
UMK212 B7105[]GHT			X7R	1 μ	±10, ±20	10	150	1.25 ± 0.10	*1, *2
GMK212 B7224[]GHT		35	X7R	0.22 μ	±10, ±20	3.5	150	1.25 ± 0.10	*1, *2
GMK212 B7105[]GHT			X7R	1 μ	±10, ±20	10	150	1.25 ± 0.10	*1, *2
TMK212 B7224[]GHT			X7R	0.22 µ	±10, ±20	3.5	150	1.25 ± 0.10	*1, *2
TMK212 B7474[]GHT		25	X7R	0.47 μ	±10, ±20	3.5	150	1.25 ± 0.10	*1, *2
TMK212 B7105[]GHTR		25	X7R	1μ	±10, ±20	10	150	1.25 ± 0.10	*1, *2
TMK212 B7225[]GHT			X7R	2.2 μ	±10, ±20	10	150	1.25 ± 0.10	*1, *2
EMK212 B7224[]GHT			X7R	0.22 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1, *2
EMK212 B7474[]GHT			X7R	0.47 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1, *2
EMK212 B7105[]GHTR		16	X7R	1 μ	±10, ±20	10	150	1.25 ± 0.10	*1, *2
EMK212 B7225[]GHT			X7R	2.2 μ	±10, ±20	10	150	1.25 ± 0.10	*1, *2
EMK212AB7475[]GHT			X7R	4.7 μ	±10, ±20	10	150	1.25+0.15/-0.05	*1, *2
LMK212 B7105[]GHTR			X7R	1μ	±10, ±20	10	150	1.25 ± 0.10	*1, *2
LMK212 B7225[]GHT		10	X7R	2.2 μ	±10, ±20	10	150	1.25 ± 0.10	*1, *2
LMK212 B7475[]GHT			X7R	4.7 μ	±10, ±20	10	150	1.25 ± 0.10	*1, *2
JMK212 B7475[]GHT		6.3	X7R	4.7 μ	±10, ±20	10	150	1.25 ± 0.10	*1, *2
JMK212AB7106[]GHT		0.0	X7R	10 <i>µ</i>	±10, ±20	10	150	1.25+0.15/-0.05	*1, *2

316TYPE (Dimension:3.2 × 1.6mm JIS:3216 EIA:1206)

[Temperature Characteristic BJ : X5R] 1.6mm thickness(L)

Part number 1	Part number 2	Rated voltage	Tempe	rature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Part number 1	Part number 2	[V]	charact	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
UMK316 BJ474[]LHT				X5R	0.47 μ	±10, ±20	3.5	200	1.6 ± 0.20	*1, *2
UMK316 BJ105[]LHT		50		X5R	1 μ	±10, ±20	3.5	200	1.6±0.20	*1, *2
UMK316 BJ225[]LHT		50		X5R	2.2 μ	±10, ±20	10	150	1.6±0.20	*1, *2
UMK316ABJ475[]LHT				X5R	4.7 μ	±10, ±20	10	150	1.6±0.20	*1, *2
GMK316 BJ105[]LHT				X5R	1 μ	±10, ±20	3.5	200	1.6 ± 0.20	*1, *2
GMK316 BJ225[]LHT		35		X5R	2.2 μ	±10, ±20	10	150	1.6 ± 0.20	*1, *2
GMK316 BJ475[]LHT				X5R	4.7 μ	±10, ±20	10	150	1.6±0.20	*1, *2
GMK316BBJ106[LHT				X5R	10 µ	±10, ±20	10	150	1.6±0.30	*1, *2
TMK316 BJ225[]LHT				X5R	2.2 μ	±10, ±20	3.5	200	1.6±0.20	*1, *2
TMK316 BJ475[]LHT		25		X5R	4.7 μ	±10, ±20	5	150	1.6±0.20	*1, *2
TMK316 BJ106[]LHT				X5R	10 <i>µ</i>	±10, ±20	5	150	1.6 ± 0.20	*1, *2
EMK316 BJ225[]LHT				X5R	2.2 μ	±10, ±20	3.5	200	1.6 ± 0.20	*1, *2
EMK316 BJ475[]LHT		16		X5R	4.7 μ	±10, ±20	5	150	1.6 ± 0.20	*1, *2
EMK316 BJ106[]LHT		10		X5R	10 <i>µ</i>	±10, ±20	5	150	1.6 ± 0.20	*1, *2
EMK316BBJ226MLHT				X5R	22 μ	±20	10	150	1.6 ± 0.30	*1, *2
LMK316 BJ475[]LHT				X5R	4.7 μ	±10, ±20	5	150	1.6 ± 0.20	*1, *2
LMK316 BJ106[]LHT		10		X5R	10 <i>µ</i>	±10, ±20	5	150	1.6 ± 0.20	*1, *2
LMK316ABJ226[]LHT				X5R	22 μ	±10, ±20	10	150	1.6±0.20	*1, *2

PART NUMBER

Part number 1	Part number 2	Rated voltage [V]	Temperature characteristics	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
JMK316 BJ106[LHT			X5R	10 <i>µ</i>	±10, ±20	5	200	1.6±0.20	*1, *2
JMK316ABJ226[]LHT		6.3	X5R	22 μ	±10, ±20	10	150	1.6 ± 0.20	*1, *2
JMK316ABJ476MLHT		0.5	X5R	47 μ	±20	10	150	1.6 ± 0.20	*1, *2
JMK316BBJ107MLHT			X5R	100 <i>µ</i>	±20	10	150	1.6 ± 0.30	*2
AMK316ABJ107MLHT		4	X5R	100 µ	±20	10	150	1.6±0.20	*2

[Temperature Characteristic B7 : X7R , C7 : X7S] 1.6mm thickness(L)

Part number 1	Part number 2	Rated voltage [V]	Temperature characteristics	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
UMK316 B7473[]LHT			X7R	0.047 μ	±10, ±20	3.5	200	1.6±0.20	*1, *2
UMK316 B7104[]LHT			X7R	0.1 μ	±10, ±20	3.5	200	1.6±0.20	*1, *2
UMK316 B7224[]LHT			X7R	0.22 μ	±10, ±20	3.5	200	1.6±0.20	*1, *2
UMK316 B7474[]LHT		50	X7R	0.47 μ	±10, ±20	3.5	200	1.6±0.20	*1, *2
UMK316 B7105[]LHT			X7R	1 μ	±10, ±20	3.5	200	1.6±0.20	*1, *2
UMK316 B7225[]LHT			X7R	2.2 μ	±10, ±20	10	150	1.6±0.20	*1, *2
UMK316AC7475[LHTE			X7S	4.7 μ	±10, ±20	2.5	150	1.6±0.20	*1, *2
GMK316 B7105[]LHT			X7R	1μ	±10, ±20	3.5	200	1.6±0.20	*1, *2
GMK316 B7225[]LHT		35	X7R	2.2 μ	±10, ±20	10	150	1.6±0.20	*1, *2
GMK316AB7475[LHT			X7R	4.7 μ	±10, ±20	10	150	1.6±0.20	*1, *2
TMK316 B7105[]LHT			X7R	1 μ	±10, ±20	3.5	200	1.6±0.20	*1, *2
TMK316 B7225[]LHT		25	X7R	2.2 μ	±10, ±20	3.5	200	1.6±0.20	*1, *2
TMK316AB7475[]LHT		25	X7R	4.7 μ	±10, ±20	10	150	1.6±0.20	*1, *2
TMK316AB7106[LHT			X7R	10 <i>µ</i>	±10, ±20	10	150	1.6±0.20	*1, *2
EMK316 B7225[]LHT			X7R	2.2 μ	±10, ±20	3.5	200	1.6±0.20	*1, *2
EMK316AB7475[]LHT		16	X7R	4.7 μ	±10, ±20	10	150	1.6±0.20	*1, *2
EMK316AB7106[]LHT			X7R	10 <i>µ</i>	±10, ±20	10	150	1.6±0.20	*1, *2
LMK316 B7475[]LHT		10	X7R	4.7 μ	±10, ±20	5	150	1.6±0.20	*1, *2
LMK316AB7106[LHT		10	X7R	10 <i>µ</i>	±10, ±20	10	150	1.6 ± 0.20	*1, *2
JMK316AB7106[]LHT		6.3	X7R	10 <i>µ</i>	±10, ±20	10	150	1.6±0.20	*1, *2
JMK316AB7226[]LHT		0.0	X7R	22 μ	±10, ±20	10	150	1.6±0.20	*1, *2
AMK316AB7226[LHT		- 4	X7R	22 μ	±10, ±20	10	150	1.6±0.20	*1, *2
AMK316AC7476MLHT		4	X7S	47 μ	±20	10	150	1.6 ± 0.20	*1, *2

325TYPE (Dimension:3.2 × 2.5mm JIS:3225 EIA:1210)

[Temperature Characteristic BJ : X5R] 2.5mm thickness(M)

Part number 1	Part number 2	Rated voltage	Temperature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Fart number i		[V]	characteristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
UMK325 BJ106[]MHP		50	X5R	10 <i>µ</i>	±10, ±20	5	150	2.5 ± 0.20	*1, *2
GMK325 BJ106[]MHP		35	X5R	10 <i>µ</i>	±10, ±20	5	150	2.5 ± 0.20	*1, *2
TMK325 BJ106[]MHP		25	X5R	10 <i>µ</i>	±10, ±20	5	150	2.5 ± 0.20	*1, *2
EMK325 BJ226[]MHP		16	X5R	22 μ	±10, ±20	5	150	2.5 ± 0.20	*1, *2
EMK325ABJ476[]MHP		10	X5R	47 μ	±10, ±20	10	150	2.5 ± 0.30	*1, *2
LMK325 BJ226[]MHP			X5R	22 μ	±10, ±20	5	150	2.5 ± 0.20	*1, *2
LMK325 BJ476[]MHP		10	X5R	47 μ	±10, ±20	10	150	2.5 ± 0.20	*1, *2
LMK325ABJ107MMHP			X5R	100 <i>µ</i>	±20	10	150	2.5 ± 0.30	*2
JMK325 BJ476[MHP		6.3	X5R	47 μ	±10, ±20	10	150	2.5±0.20	*1, *2
JMK325ABJ107MMHP		0.5	X5R	100 <i>µ</i>	±20	10	150	2.5 ± 0.30	*2
AMK325ABJ107MMHP		4	X5R	100 <i>µ</i>	±20	10	150	2.5 ± 0.30	*2
AMK325ABJ227MMHP		4	X5R	220 μ	±20	10	150	2.5 ± 0.30	*2

[Temperature Characteristic BJ : X5R] 1.9mm thickness(N)

Part number 1	Part number 2	Rated voltage [V]	Temper characte		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
UMK325 BJ475[]NHT		50		X5R	4.7 μ	±10, ±20	10	150	1.9 ± 0.20	*1, *2
GMK325 BJ225MNHT		35		X5R	2.2 μ	±20	3.5	200	1.9 ± 0.20	*1, *2
GMK325 BJ475[]NHT				X5R	4.7 μ	±10, ±20	10	150	1.9 ± 0.20	*1, *2
TMK325 BJ475[]NHT		25		X5R	4.7 μ	±10, ±20	10	150	1.9 ± 0.20	*1, *2
EMK325 BJ475MNHT		16		X5R	4.7 μ	±20	3.5	200	1.9 ± 0.20	*1, *2
EMK325 BJ106[NHT		10		X5R	10 <i>µ</i>	±10, ±20	5	150	1.9 ± 0.20	*1, *2

[Temperature Characteristic C6 : X6S] 2.5mm thickness(M)

Part number 1	Part number 2	Rated voltage [V]	Tempe charact		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
JMK325AC6107MMHP		6.3		X6S	100 <i>µ</i>	±20	10	150	2.5 ± 0.30	*2

[Temperature Characteristic B7 : X7R] 2.5mm thickness(M)

Part number 1	Part number 2	Rated voltage		rature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
i are nambor i		[V]	charact	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [min]	
UMK325 B7475[]MHP		50		X7R	4.7 μ	±10, ±20	5	150	2.5 ± 0.20	*1, *2
UMK325AB7106[]MHP		50		X7R	10 <i>µ</i>	±10, ±20	10	150	2.5 ± 0.30	*1, *2
GMK325AB7106[]MHP		35		X7R	10 <i>µ</i>	±10, ±20	10	150	2.5 ± 0.30	*1, *2
TMK325AB7106[]MHPR		25		X7R	10 <i>µ</i>	±10, ±20	10	150	2.5 ± 0.30	*1, *2
TMK325 B7226[]MHP		25		X7R	22 μ	±10, ±20	10	150	2.5 ± 0.20	*1, *2
EMK325 B7226[]MHP		16		X7R	22 μ	±10, ±20	10	150	2.5±0.20	*1, *2
LMK325 B7226[]MHP		10		X7R	22 μ	±10, ±20	10	150	2.5±0.20	*1, *2
JMK325 B7226[]MHPR		6.3		X7R	22 μ	±10, ±20	10	150	2.5±0.20	*1, *2
JMK325 B7476 MHPR		0.5		X7R	47 μ	±10, ±20	10	150	2.5 ± 0.20	*1, *2

【Temperature Characteristic B7 : X7R】 1.9mm thickness(N)

Part number 1	Part number 2	Rated voltage [V]	Temperature characteristic	1	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
GMK325 B7225[]NHT		35	X7	R 2.2 μ	±10, ±20	3.5	200	1.9 ± 0.20	*1, *2
GMK325 B7475[]NHTR		30	X7	R 4.7 μ	±10, ±20	10	150	1.9±0.20	*1, *2
TMK325 B7475[]NHT		25	X7	R 4.7 μ	±10, ±20	10	150	1.9 ± 0.20	*1, *2
EMK325 B7475[]NHT		16	X7	R 4.7 μ	±10, ±20	3.5	150	1.9 ± 0.20	*1, *2
EMK325 B7106[]NHTR		10	X7	R 10 μ	±10, ±20	10	150	1.9±0.20	*1, *2

Multilayer Ceramic Capacitors (Temperature compensating type)

•063TYPE (Dimension:0.6 × 0.3mm JIS:0603 EIA:0201) [Temperature Characteristic CG : CG/C0G] 0.3mm thickness(T)

Part number 1	Part number 2	Rated voltage	Tempe	erature	Capacitance	Capacitance	Q [at 1MHz]	HTLT	Thickness ^{*3} [mm]	Note
Fart number 1	Fart number 2	[V]	charact	eristics	[F]	tolerance	(Min)	Rated voltage x %	Thickness [mm]	Note
UMK063 CG0R5CTHF			CG	COG	0.5 p	±0.25pF	410	200	0.3 ± 0.03	*1, *2
UMK063 CG010CTHF			CG	COG	1 p	±0.25pF	420	200	0.3 ± 0.03	*1, *2
UMK063 CG1R5CTHF			CG	COG	1.5 p	±0.25pF	430	200	0.3 ± 0.03	*1, *2
UMK063 CG020CTHF			CG	COG	2 p	±0.25pF	440	200	0.3 ± 0.03	*1, *2
UMK063 CG030CTHF			CG	COG	3 p	±0.25pF	460	200	0.3 ± 0.03	*1, *2
UMK063 CG040CTHF			CG	COG	4 p	±0.25pF	480	200	0.3 ± 0.03	*1, *2
UMK063 CG050CTHF			CG	COG	5 p	±0.25pF	500	200	0.3 ± 0.03	*1, *2
UMK063 CG060DTHF			CG	COG	6 p	$\pm 0.5 pF$	520	200	0.3 ± 0.03	*1, *2
UMK063 CG070DTHF			CG	COG	7 p	$\pm 0.5 pF$	540	200	0.3 ± 0.03	*1, *2
UMK063 CG080DTHF			CG	COG	8 p	$\pm 0.5 pF$	560	200	0.3 ± 0.03	*1, *2
UMK063 CG090DTHF			CG	COG	9 p	$\pm 0.5 pF$	580	200	0.3 ± 0.03	*1, *2
UMK063 CG100DTHF		50	CG	COG	10 p	$\pm 0.5 pF$	600	200	0.3 ± 0.03	*1, *2
UMK063 CG120JTHF		50	CG	COG	12 p	±5%	640	200	0.3 ± 0.03	*1, *2
UMK063 CG150JTHF			CG	COG	15 p	±5%	700	200	0.3 ± 0.03	*1, *2
UMK063 CG180JTHF			CG	COG	18 p	$\pm 5\%$	760	200	0.3 ± 0.03	*1, *2
UMK063 CG220JTHF			CG	COG	22 p	$\pm 5\%$	840	200	0.3 ± 0.03	*1, *2
UMK063 CG270JTHF			CG	COG	27 p	$\pm 5\%$	940	200	0.3 ± 0.03	*1, *2
UMK063 CG330JTHF			CG	COG	33 p	$\pm 5\%$	1000	200	0.3 ± 0.03	*1, *2
UMK063 CG390JTHF			CG	COG	39 p	$\pm 5\%$	1000	200	0.3 ± 0.03	*1, *2
UMK063 CG470JTHF			CG	COG	47 p	±5%	1000	200	0.3 ± 0.03	*1, *2
UMK063 CG560JTHF			CG	COG	56 p	±5%	1000	200	0.3 ± 0.03	*1, *2
UMK063 CG680JTHF			CG	COG	68 p	±5%	1000	200	0.3 ± 0.03	*1, *2
UMK063 CG820JTHF			CG	COG	82 p	±5%	1000	200	0.3 ± 0.03	*1, *2
UMK063 CG101JTHF			CG	COG	100 p	±5%	1000	200	0.3 ± 0.03	*1, *2
TMK063 CG121JTHF			CG	COG	120 p	±5%	1000	200	0.3 ± 0.03	*1, *2
TMK063 CG151JTHF		25	CG	COG	150 p	±5%	1000	200	0.3 ± 0.03	*1, *2
TMK063 CG181JTHF		20	CG	COG	180 p	±5%	1000	200	0.3 ± 0.03	*1, *2
TMK063 CG221JTHF			CG	C0G	220 p	±5%	1000	200	0.3 ± 0.03	*1, *2

105TYPE (Dimension:1.0 × 0.5mm JIS:1005 EIA:0402)

Part number 1	Part number 2	Rated voltage [V]		erature teristics	Capacitance [F]	Capacitance tolerance	Q [at 1MHz] (Min)	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
UMK105 CG0R5CVHF			CG	C0G	0.5 p	±0.25pF	410	200	0.5 ± 0.05	*1, *2
UMK105 CG010CVHF		_	CG	COG	1 p	±0.25pF	420	200	0.5 ± 0.05	*1, *2
UMK105 CG1R5CVHF		_	CG	C0G	1.5 p	±0.25pF	430	200	0.5 ± 0.05	*1, *2
UMK105 CG020CVHF			CG	COG	2 p	±0.25pF	440	200	0.5 ± 0.05	*1, *2
UMK105 CG030CVHF			CG	C0G	3 p	±0.25pF	460	200	0.5 ± 0.05	*1, *2
UMK105 CG040CVHF			CG	COG	4 p	±0.25pF	480	200	0.5 ± 0.05	*1, *2
UMK105 CG050CVHF			CG	COG	5 p	±0.25pF	500	200	0.5 ± 0.05	*1, *2
UMK105 CG060DVHF			CG	COG	6 p	±0.5pF	520	200	0.5 ± 0.05	*1, *2
UMK105 CG070DVHF			CG	C0G	7 p	±0.5pF	540	200	0.5 ± 0.05	*1, *2
UMK105 CG080DVHF			CG	C0G	8 p	±0.5pF	560	200	0.5 ± 0.05	*1, *2
UMK105 CG090DVHF			CG	COG	9 p	±0.5pF	580	200	0.5 ± 0.05	*1, *2
UMK105 CG100DVHF			CG	COG	10 p	±0.5pF	600	200	0.5 ± 0.05	*1, *2
UMK105 CG120JVHF			CG	COG	12 p	±5%	640	200	0.5 ± 0.05	*1, *2
UMK105 CG150JVHF			CG	COG	15 p	±5%	700	200	0.5 ± 0.05	*1, *2
UMK105 CG180JVHF			CG	COG	18 p	±5%	760	200	0.5 ± 0.05	*1, *2
UMK105 CG220JVHF			CG	COG	22 p	±5%	840	200	0.5 ± 0.05	*1, *2
UMK105 CG270JVHF			CG	COG	27 p	±5%	940	200	0.5 ± 0.05	*1, *2
UMK105 CG330JVHF		50	CG	COG	33 p	±5%	1000	200	0.5 ± 0.05	*1, *2
UMK105 CG390JVHF		50	CG	COG	39 p	±5%	1000	200	0.5 ± 0.05	*1, *2
UMK105 CG470JVHF			CG	COG	47 p	±5%	1000	200	0.5 ± 0.05	*1, *2
UMK105 CG560JVHF			CG	COG	56 p	±5%	1000	200	0.5 ± 0.05	*1, *2
UMK105 CG680JVHF			CG	COG	68 p	±5%	1000	200	0.5 ± 0.05	*1, *2
UMK105 CG820JVHF			CG	COG	82 p	±5%	1000	200	0.5 ± 0.05	*1, *2
UMK105 CG101JVHF			CG	COG	100 p	±5%	1000	200	0.5 ± 0.05	*1, *2
UMK105 CG121JVHF			CG	COG	120 p	±5%	1000	200	0.5 ± 0.05	*1, *2
UMK105 CG151JVHF			CG	COG	150 p	±5%	1000	200	0.5 ± 0.05	*1, *2
UMK105 CG181JVHF			CG	COG	180 p	±5%	1000	200	0.5 ± 0.05	*1, *2
UMK105 CG221JVHF			CG	COG	220 p	±5%	1000	200	0.5 ± 0.05	*1, *2
UMK105 CG271JVHF			CG	C0G	270 p	±5%	1000	200	0.5 ± 0.05	*1, *2
UMK105 CG331JVHF			CG	C0G	330 p	±5%	1000	200	0.5±0.05	*1, *2
UMK105 CG391JVHF		ן ר	CG	C0G	390 p	±5%	1000	200	0.5±0.05	*1, *2
UMK105 CG471JVHF			CG	C0G	470 p	±5%	1000	200	0.5 ± 0.05	*1, *2
UMK105 CG561JVHF		ן ר	CG	C0G	560 p	±5%	1000	200	0.5±0.05	*1, *2
UMK105 CG681JVHF		ן ר	CG	C0G	680 p	±5%	1000	200	0.5 ± 0.05	*1, *2
UMK105 CG821JVHF		7	CG	C0G	820 p	±5%	1000	200	0.5 ± 0.05	*1, *2
UMK105 CG102JVHF			CG	COG	1000 p	±5%	1000	200	0.5 ± 0.05	*1, *2

CERAMIC CAPACITORS

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

28

Medium-High Voltage Multilayer Ceramic Capacitors

• 107TYPE (Dimension:1.6 × 0.8mm JIS:1608 EIA:0603) [Temperature Characteristic B7 : X7R , C7 : X7S] 0.8mm thickness (A)

Part number 1	Part number 2	Rated voltage	Temper	ature	Capacitance	Capacitance	tan ô	HTLT	Thickness ^{*3} [mm]	Note
Fart number i		[V]	characte	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Inickness [mm]	Note
HMK107 B7102[]AHT				X7R	1000 p	±10, ±20	3.5	200	0.8±0.10	*1, *2
HMK107 B7152[]AHT				X7R	1500 p	±10, ±20	3.5	200	0.8±0.10	*1, *2
HMK107 B7222[]AHT				X7R	2200 p	±10, ±20	3.5	200	0.8±0.10	*1, *2
HMK107 B7332[]AHT				X7R	3300 p	±10, ±20	3.5	200	0.8±0.10	*1, *2
HMK107 B7472[]AHT				X7R	4700 p	±10, ±20	3.5	200	0.8±0.10	*1, *2
HMK107 B7682[]AHT				X7R	6800 p	±10, ±20	3.5	200	0.8±0.10	*1, *2
HMK107 B7103[]AHT		100		X7R	0.01 µ	±10, ±20	3.5	200	0.8±0.10	*1, *2
HMK107 B7153[]AHT				X7R	0.015 μ	±10, ±20	3.5	200	0.8±0.10	*1, *2
HMK107 B7223[]AHT				X7R	0.022 μ	±10, ±20	3.5	200	0.8±0.10	*1, *2
HMK107 B7333[]AHT				X7R	0.033 µ	±10, ±20	3.5	200	0.8±0.10	*1, *2
HMK107 B7473[]AHT				X7R	0.047 μ	±10, ±20	3.5	200	0.8±0.10	*1, *2
HMK107 B7104[]AHT		1		X7R	0.1 μ	±10, ±20	3.5	200	0.8±0.10	*1, *2
HMK107 C7224 AHTE				X7S	0.22 μ	±10, ±20	3.5	150	0.8±0.10	*1, *2

●212TYPE (Dimension:2.0 × 1.25mm JIS:2012 EIA:0805) [Temperature Characteristic B7 : X7R , C7 : X7S] 1.25mm thickness(G)

Part number 1	Part number 2	Rated voltage	Temperature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Part number 1	Part number 2	[V]	characteristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	
HMK212 B7103[]GHT			X7R	0.01 µ	±10, ±20	3.5	200	1.25 ± 0.10	*1, *2
HMK212 B7153[]GHT			X7R	0.015 µ	±10, ±20	3.5	200	1.25 ± 0.10	*1, *2
HMK212 B7223[]GHT			X7R	0.022 µ	±10, ±20	3.5	200	1.25 ± 0.10	*1, *2
HMK212 B7333[]GHT			X7R	0.033 µ	±10, ±20	3.5	200	1.25 ± 0.10	*1, *2
HMK212 B7473[]GHT		100	X7R	0.047 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1, *2
HMK212 B7683[]GHT		100	X7R	0.068 µ	±10, ±20	3.5	200	1.25 ± 0.10	*1, *2
HMK212 B7104[]GHT			X7R	0.1 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1, *2
HMK212 B7224[]GHT			X7R	0.22 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1, *2
HMK212 C7474[GHTE			X7S	0.47 μ	±10, ±20	3.5	150	1.25 ± 0.10	*1, *2
HMK212BC7105[]GHTE			X7S	1μ	±10, ±20	3.5	150	1.25+0.20/-0	*1, *2
QMK212 B7472[]GHT			X7R	4700 p	±10, ±20	2.5	150	1.25 ± 0.10	*1, *2
QMK212 B7682[]GHT			X7R	6800 p	±10, ±20	2.5	150	1.25 ± 0.10	*1, *2
QMK212 B7103[]GHT		250	X7R	0.01 µ	±10, ±20	2.5	150	1.25 ± 0.10	*1, *2
QMK212 B7153[]GHT			X7R	0.015 µ	±10, ±20	2.5	150	1.25 ± 0.10	*1, *2
QMK212 B7223[]GHT			X7R	0.022 μ	±10, ±20	2.5	150	1.25 ± 0.10	*1, *2

[Temperature Characteristic B7 : X7R] 0.85mm thickness(D)

Part number 1	Part number 2	Rated voltage [V]	Tempe characte	rature eristics	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
QMK212 B7102[]DHT				X7R	1000 p	±10, ±20	2.5	150	0.85±0.10	*1, *2
QMK212 B7152[]DHT		250		X7R	1500 p	±10, ±20	2.5	150	0.85 ± 0.10	*1, *2
QMK212 B7222[]DHT		230		X7R	2200 p	±10, ±20	2.5	150	0.85 ± 0.10	*1, *2
QMK212 B7332[]DHT				X7R	3300 p	±10, ±20	2.5	150	0.85±0.10	*1, *2

316TYPE (Dimension:3.2 × 1.6mm JIS:3216 EIA:1206)

[Temperature Characteristic B7 : X7R , C7 : X7S] 1.6mm thickness(L)										
Part number 1	Part number 2	Rated voltage [V]	Temperature characteristic		Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note	
HMK316 B7473[LHT			X7	R 0.047 μ	±10, ±20	3.5	200	1.6±0.20	*1, *2	
HMK316 B7104[]LHT			X7	R 0.1 μ	±10, ±20	3.5	200	1.6 ± 0.20	*1, *2	
HMK316 B7154[]LHT			X7	R 0.15 μ	±10, ±20	3.5	200	1.6 ± 0.20	*1, *2	
HMK316 B7224[]LHT		100	X7	R 0.22 μ	±10, ±20	3.5	200	1.6 ± 0.20	*1, *2	
HMK316 B7334[]LHT		100	X7	R 0.33 μ	±10, ±20	3.5	200	1.6 ± 0.20	*1, *2	
HMK316 B7474[]LHT			X7	R 0.47 μ	±10, ±20	3.5	200	1.6 ± 0.20	*1, *2	
HMK316 B7105[]LHT			X7	τ 1 μ	±10, ±20	3.5	200	1.6 ± 0.20	*1, *2	
HMK316AC7225[]LHTE			X7	δ 2.2 μ	±10, ±20	3.5	150	1.6 ± 0.20	*1, *2	
QMK316 B7333[]LHT			X7	R 0.033 μ	±10, ±20	2.5	150	1.6 ± 0.20	*1, *2	
QMK316 B7473[LHT		250	X7	R 0.047 μ	±10, ±20	2.5	150	1.6 ± 0.20	*1, *2	
QMK316 B7683[]LHT		230	X7	R 0.068 μ	±10, ±20	2.5	150	1.6 ± 0.20	*1, *2	
QMK316 B7104[]LHT			X7	R 0.1 μ	±10, ±20	2.5	150	1.6±0.20	*1, *2	
SMK316 B7153[LHT		630	X7	R 0.015 μ	±10, ±20	2.5	120	1.6 ± 0.20	*1, *2	
SMK316 B7223[]LHT		030	X7	R 0.022 μ	±10, ±20	2.5	120	1.6±0.20	*1, *2	

[Temperature Characteristic B7 : X7R] 1.15mm thickness(F)

Part number 1	Part number 2	Rated voltage	Temperature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Part number 1	Part number 2	[V]	characteristic	s [F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
SMK316 B7102[]FHT			X7	R 1000 p	±10, ±20	2.5	120	1.15±0.10	*1, *2
SMK316 B7152[]FHT			X7	R 1500 p	±10, ±20	2.5	120	1.15±0.10	*1, *2
SMK316 B7222 FHT			X7	R 2200 p	±10, ±20	2.5	120	1.15±0.10	*1, *2
SMK316 B7332[]FHT		630	X7	R 3300 p	±10, ±20	2.5	120	1.15 ± 0.10	*1, *2
SMK316 B7472[]FHT			X7	R 4700 p	±10, ±20	2.5	120	1.15±0.10	*1, *2
SMK316 B7682[]FHT			X7	R 6800 p	±10, ±20	2.5	120	1.15±0.10	*1, *2
SMK316 B7103[]FHT			X7	R 0.01 μ	±10, ±20	2.5	120	1.15±0.10	*1, *2

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

29

CERAMIC CAPACITORS

• 325TYPE (Dimension:3.2 × 2.5mm JIS:3225 EIA:1210)

	Part number 1	Part number 2	Rated voltage [V]	Temperature characteristics		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
H	MK325 B7225[]MHP		100		X7R	2.2 μ	±10, ±20	3.5	200	2.5 ± 0.20	*1, *2
H	MK325 C7475[]MHPE		100		X7S	4.7 μ	±10, ±20	3.5	150	2.5 ± 0.20	*1, *2

[Temperature Characteristic B7 : X7R] 1.9mm thickness(N)

Part number 1	Part number 2	Rated voltage	Temperature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Part number 1	Part number 2	[V]	characteristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
HMK325 B7224[]NHT			X7R	0.22 μ	±10, ±20	3.5	200	1.9±0.20	*1, *2
HMK325 B7474[]NHT		100	X7R	0.47 μ	±10, ±20	3.5	200	1.9 ± 0.20	*1, *2
HMK325 B7684[]NHT		100	X7R	0.68 µ	±10, ±20	3.5	200	1.9±0.20	*1, *2
HMK325 B7105[]NHT			X7R	1 μ	±10, ±20	3.5	200	1.9±0.20	*1, *2
QMK325 B7473[]NHT			X7R	0.047 μ	±10, ±20	2.5	150	1.9±0.20	*1, *2
QMK325 B7104[]NHT		250	X7R	0.1 µ	±10, ±20	2.5	150	1.9±0.20	*1, *2
QMK325 B7154[]NHT		200	X7R	0.15 µ	±10, ±20	2.5	150	1.9±0.20	*1, *2
QMK325 B7224[]NHT			X7R	0.22 μ	±10, ±20	2.5	150	1.9±0.20	*1, *2
SMK325 B7223[]NHT			X7R	0.022 µ	±10, ±20	2.5	120	1.9±0.20	*1, *2
SMK325 B7333[]NHT		630	X7R	0.033 µ	±10, ±20	2.5	120	1.9±0.20	*1, *2
SMK325 B7473[]NHT		1	X7R	0.047 μ	±10, ±20	2.5	120	1.9±0.20	*1, *2

【Temperature Characteristic B7 : X7R】 1.15mm thickness(F)

Part number 1	Part number 2	Rated voltage [V]	Temper characte		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
HMK325 B7104[]FHT		100		X7R	0.1 μ	±10, ±20	3.5	200	1.15±0.10	*1, *2

●432TYPE (Dimension:4.5 × 3.2mm JIS:4532 EIA:1812) [Temperature Characteristic_B7 : X7R] 2.5mm thickness(M)

Part number 1	Part number 2	Rated voltage [V]	Tempe characte		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
HMK432 B7474[]MHT			1	X7R	0.47 μ	±10, ±20	3.5	200	2.5±0.20	*1, *2
HMK432 B7105[]MHT		100		X7R	1μ	±10, ±20	3.5	200	2.5±0.20	*1, *2
HMK432 B7155[]MHT		100		X7R	1.5 μ	±10, ±20	3.5	200	2.5±0.20	*1, *2
HMK432 B7225[]MHT				X7R	2.2 μ	±10, ±20	3.5	200	2.5 ± 0.20	*1, *2
QMK432 B7104[]MHT				X7R	0.1 μ	±10, ±20	2.5	150	2.5 ± 0.20	*1, *2
QMK432 B7224[]MHT		250		X7R	0.22 μ	±10, ±20	2.5	150	2.5±0.20	*1, *2
QMK432 B7334[]MHT		250		X7R	0.33 μ	±10, ±20	2.5	150	2.5 ± 0.20	*1, *2
QMK432 B7474[]MHT				X7R	0.47 μ	±10, ±20	2.5	150	2.5 ± 0.20	*1, *2
SMK432 B7473[]MHT				X7R	0.047 μ	±10, ±20	2.5	120	2.5±0.20	*1, *2
SMK432 B7683[]MHT		630		X7R	0.068 µ	±10, ±20	2.5	120	2.5±0.20	*1, *2
SMK432 B7104[]MHT				X7R	0.1 μ	±10, ±20	2.5	120	2.5 ± 0.20	*1, *2

Medium-High Voltage Multilayer Ceramic Capacitors for High Frequency Applications

●107TYPE (Dimension:1.6×0.8mm JIS:1608 EIA:0603) [Temperature Characteristic CG: CG/C0G] 0.7mm thickness(C)

Part number 1	Part number 2	Rated voltage [V]		erature teristics	Capacitance [F]	Capacitance tolerance	Q [at 1MHz]	HTLT	Thickness ^{*3} [mm]	Note
				-			(Min)	Rated voltage x %		
QVS107 CG0R5[CHT		_	CG	C0G	0.5 p	±0.1pF, ±0.25pF	810	200	0.7±0.10	*2
QVS107 CG0R6[CHT		_	CG	COG	0.6 p	±0.1pF, ±0.25pF	812	200	0.7±0.10	*2
QVS107 CG0R7[CHT		_	CG	C0G	0.7 p	±0.1pF, ±0.25pF	814	200	0.7±0.10	*2
QVS107 CGR75[CHT		_	CG	C0G	0.75 p	±0.1pF, ±0.25pF	815	200	0.7±0.10	*2
QVS107 CG0R8[CHT		_	CG	C0G	0.8 p	±0.1pF, ±0.25pF	816	200	0.7±0.10	*2
QVS107 CG0R9[CHT			CG	COG	0.9 p	±0.1pF, ±0.25pF	818	200	0.7±0.10	*2
QVS107 CG010[CHT			CG	COG	1 p	±0.1pF, ±0.25pF	820	200	0.7±0.10	*2
QVS107 CG1R1[CHT			CG	COG	1.1 p	±0.1pF, ±0.25pF	822	200	0.7±0.10	*2
QVS107 CG1R2[CHT		_	CG	COG	1.2 p	±0.1pF, ±0.25pF	824	200	0.7±0.10	*2
QVS107 CG1R3[CHT			CG	COG	1.3 p	±0.1pF, ±0.25pF	826	200	0.7±0.10	*2
QVS107 CG1R5[CHT		_	CG	COG	1.5 p	±0.1pF, ±0.25pF	830	200	0.7±0.10	*2
QVS107 CG1R6[CHT		_	CG	COG	1.6 p	±0.1pF, ±0.25pF	832	200	0.7±0.10	*2
QVS107 CG1R8[CHT		_	CG	COG	1.8 p	±0.1pF, ±0.25pF	836	200	0.7±0.10	*2
QVS107 CG020[CHT			CG	COG	2 p	±0.1pF, ±0.25pF	840	200	0.7±0.10	*2
QVS107 CG2R2[CHT		_	CG	COG	2.2 p	±0.1pF, ±0.25pF	844	200	0.7±0.10	*2
QVS107 CG2R4[CHT		_	CG	COG	2.4 p	±0.1pF, ±0.25pF	848	200	0.7±0.10	*2
QVS107 CG2R7[CHT		-	CG	COG	2.7 p	±0.1pF, ±0.25pF	854	200	0.7±0.10	*2
QVS107 CG030[CHT		_	CG	COG	3 p	±0.1pF, ±0.25pF	860	200	0.7±0.10	*2
QVS107 CG3R3[CHT		_	CG	COG	3.3 p	±0.1pF, ±0.25pF	866	200	0.7±0.10	*2
QVS107 CG3R6[CHT		_	CG	COG	3.6 p	±0.1pF, ±0.25pF	872	200	0.7±0.10	*2
QVS107 CG3R9[CHT		_	CG	COG	3.9 p	±0.1pF, ±0.25pF	878	200	0.7±0.10	*2
QVS107 CG4R3[CHT			CG	COG	4.3 p	±0.1pF, ±0.25pF	886	200	0.7±0.10	*2
QVS107 CG4R7[CHT			CG	COG	4.7 p	±0.1pF, ±0.25pF	894	200	0.7±0.10	*2
QVS107 CG5R1[CHT			CG	COG	5.1 p	$\pm 0.25 pF, \pm 0.5 pF$	902	200	0.7±0.10	*2
QVS107 CG5R6[CHT			CG	COG	5.6 p	$\pm 0.25 pF, \pm 0.5 pF$	912	200	0.7±0.10	*2
QVS107 CG6R2[CHT			CG	COG	6.2 p	$\pm 0.25 pF, \pm 0.5 pF$	924	200	0.7±0.10	*2
QVS107 CG6R8[CHT		250	CG	COG	6.8 p	$\pm 0.25 pF, \pm 0.5 pF$	936	200	0.7±0.10	*2
QVS107 CG7R5[CHT			CG	COG	7.5 p	$\pm 0.25 pF, \pm 0.5 pF$	950	200	0.7±0.10	*2
QVS107 CG8R2[CHT			CG	COG	8.2 p	$\pm 0.25 pF, \pm 0.5 pF$	964	200	0.7±0.10	*2
QVS107 CG100[CHT			CG	COG	10 p	±2%, ±5%	1000	200	0.7±0.10	*2
QVS107 CG110JCHT			CG	COG	11 p	±5%	1020	200	0.7±0.10	*2
QVS107 CG120JCHT			CG	COG	12 p	±5%	1040	200	0.7±0.10	*2
QVS107 CG130JCHT			CG	COG	13 p	±5%	1060	200	0.7±0.10	*2
QVS107 CG150JCHT			CG	COG	15 p	±5%	1100	200	0.7±0.10	*2
QVS107 CG160JCHT			CG	COG	16 p	±5%	1120	200	0.7±0.10	*2
QVS107 CG180JCHT			CG	COG	18 p	±5%	1160	200	0.7±0.10	*2
QVS107 CG200JCHT			CG	C0G	20 p	±5%	1200	200	0.7±0.10	*2
QVS107 CG220JCHT			CG	COG	22 p	±5%	1240	200	0.7±0.10	*2
QVS107 CG240JCHT			CG	COG	24 p	±5%	1280	200	0.7±0.10	*2
QVS107 CG270JCHT			CG	COG	27 p	±5%	1340	200	0.7±0.10	*2
QVS107 CG300JCHT			CG	COG	30 p	±5%	1400	200	0.7±0.10	*2
QVS107 CG330JCHT			CG	COG	33 p	±5%	1400	200	0.7±0.10	*2
QVS107 CG360JCHT			CG	COG	36 p	±5%	1400	200	0.7±0.10	*2
QVS107 CG390JCHT			CG	COG	39 p	±5%	1400	200	0.7±0.10	*2
QVS107 CG430JCHT		4	CG	COG	43 p	±5%	1400	200	0.7±0.10	*2
QVS107 CG470JCHT		4	CG	COG	47 p	±5%	1400	200	0.7±0.10	*2
QVS107 CG510JCHT		4	CG	COG	51 p	±5%	1400	200	0.7±0.10	*2
QVS107 CG560JCHT			CG	COG	56 p	±5%	1400	200	0.7±0.10	*2
QVS107 CG620JCHT			CG	COG	62 p	±5%	1400	200	0.7±0.10	*2
QVS107 CG680JCHT			CG	COG	68 p	±5%	1400	200	0.7±0.10	*2
QVS107 CG750JCHT			CG	COG	75 p	±5%	1400	200	0.7±0.10	*2
QVS107 CG820JCHT			CG	C0G	82 p	±5%	1400	200	0.7±0.10	*2
QVS107 CG910JCHT			CG	C0G	91 p	±5%	1400	200	0.7±0.10	*2
QVS107 CG101JCHT			CG	C0G	100 p	±5%	1400	200	0.7±0.10	*2

212TYPE (Dimension:2.0 × 1.25mm JIS:2012 EIA:0805)

Temperature Characterist	tic CG : CG/C0G] 0.85n	nm thickness(D)								
		Rated voltage	Tempe	erature	Capacitance	Capacitance	Q	HTLT	*3	
Part number 1	Part number 2	[V]	charact	eristics	[F]	tolerance	[at 1MHz] (Min)	Rated voltage x %	Thickness ^{*3} [mm]	Note
QVS212 CG0R5[]DHT			CG	COG	0.5 p	±0.1pF, ±0.25pF	810	200	0.85±0.10	*2
QVS212 CG0R6[]DHT			CG	COG	0.6 p	±0.1pF, ±0.25pF	812	200	0.85±0.10	*2
QVS212 CG0R7[]DHT			CG	COG	0.7 p	$\pm 0.1 pF, \pm 0.25 pF$	814	200	0.85 ± 0.10	*2
QVS212 CG0R9[]DHT			CG	COG	0.9 p	$\pm 0.1 pF, \pm 0.25 pF$	818	200	0.85 ± 0.10	*2
QVS212 CG2R2[]DHT			CG	COG	2.2 p	$\pm 0.1 pF, \pm 0.25 pF$	844	200	0.85 ± 0.10	*2
QVS212 CG2R7[]DHT			CG	COG	2.7 p	±0.1pF, ±0.25pF	854	200	0.85 ± 0.10	*2
QVS212 CG3R3[]DHT			CG	C0G	3.3 p	±0.1pF, ±0.25pF	866	200	0.85±0.10	*2
QVS212 CG4R7[]DHT			CG	C0G	4.7 p	±0.1pF, ±0.25pF	894	200	0.85 ± 0.10	*2
QVS212 CG6R2[]DHT			CG	COG	6.2 p	$\pm 0.25 pF, \pm 0.5 pF$	924	200	0.85 ± 0.10	*2
QVS212 CG8R2[]DHT			CG	COG	8.2 p	$\pm 0.25 pF, \pm 0.5 pF$	964	200	0.85 ± 0.10	*2
QVS212 CG9R1[]DHT			CG	COG	9.1 p	$\pm 0.25 pF, \pm 0.5 pF$	982	200	0.85 ± 0.10	*2
QVS212 CG100JDHT		250	CG	COG	10 p	±5%	1000	200	0.85 ± 0.10	*2
QVS212 CG150JDHT			CG	COG	15 p	±5%	1100	200	0.85 ± 0.10	*2
QVS212 CG180JDHT			CG	COG	18 p	±5%	1160	200	0.85±0.10	*2
QVS212 CG220JDHT			CG	COG	22 p	±5%	1240	200	0.85±0.10	*2
QVS212 CG270JDHT			CG	COG	27 p	±5%	1340	200	0.85±0.10	*2
QVS212 CG300JDHT			CG	COG	30 p	±5%	1400	200	0.85±0.10	*2
QVS212 CG330JDHT			CG	COG	33 p	±5%	1400	200	0.85±0.10	*2
QVS212 CG390JDHT			CG	COG	39 p	±5%	1400	200	0.85±0.10	*2
QVS212 CG470JDHT]	CG	COG	47 p	±5%	1400	200	0.85±0.10	*2
QVS212 CG560JDHT]	CG	COG	56 p	±5%	1400	200	0.85±0.10	*2
QVS212 CG620JDHT]	CG	COG	62 p	±5%	1400	200	0.85±0.10	*2
QVS212 CG101JDHT]	CG	COG	100 p	±5%	1400	200	0.85±0.10	*2

CERAMIC CAPACITORS

Soft Termination Multilayer Ceramic Capacitors

●107TYPE (Dimension:1.6×0.8mm JIS:1608 EIA:0603) [Temperature Characteristic B7 : X7R] 0.8mm thickness(A)

Part number 1	Part number 2	Rated voltage	Temper	rature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
i arc number i		[V]	characte	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Inickness [mm]	NOLE
TMJ107BB7473[AHT				X7R	0.047 μ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
TMJ107BB7104[]AHT				X7R	0.1 μ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
TMJ107BB7224[]AHT		25		X7R	0.22 μ	±10, ±20	10	150	0.8+0.20/-0	*1, *2
TMJ107BB7474[]AHT				X7R	0.47 μ	±10, ±20	10	150	0.8+0.20/-0	*1, *2
TMJ107CB7105[]AHR				X7R	1 μ	±10, ±20	10	150	0.8+0.25/-0	*1, *2
GMJ107BB7473[AHT				X7R	0.047 μ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
GMJ107BB7104[]AHT				X7R	0.1 μ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
GMJ107BB7224[]AHT		35		X7R	0.22 μ	±10, ±20	10	150	0.8+0.20/-0	*1, *2
GMJ107BB7474[AHT				X7R	0.47 μ	±10, ±20	10	150	0.8+0.20/-0	*1, *2
GMJ107CB7105[AHR				X7R	1 μ	±10, ±20	10	150	0.8+0.25/-0	*1, *2
UMJ107AB7102[]AHT				X7R	1000 p	±10, ±20	3.5	200	0.8+0.15/-0.05	*1, *2
UMJ107AB7222[]AHT				X7R	2200 p	±10, ±20	3.5	200	0.8+0.15/-0.05	*1, *2
UMJ107BB7472[]AHT				X7R	4700 p	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
UMJ107BB7103[]AHT		50		X7R	0.01 µ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
UMJ107BB7223[]AHT				X7R	0.022 µ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
UMJ107BB7473[]AHT				X7R	0.047 μ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
UMJ107BB7104[]AHT				X7R	0.1 μ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
HMJ107AB7102[]AHT				X7R	1000 p	±10, ±20	3.5	200	0.8+0.15/-0.05	*1, *2
HMJ107AB7222[]AHT				X7R	2200 p	±10, ±20	3.5	200	0.8+0.15/-0.05	*1, *2
HMJ107BB7472[]AHT				X7R	4700 p	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
HMJ107BB7103[]AHT		100		X7R	0.01 µ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
HMJ107BB7223[]AHT]		X7R	0.022 µ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
HMJ107BB7473[]AHT]		X7R	0.047 μ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
HMJ107BB7104[]AHT				X7R	0.1 μ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2

212TYPE (Dimension:2.0 × 1.25mm JIS:2012 EIA:0805)

[Temperature Characteristic B7 : X7R , C7 : X7S] 0.85mm thickness(D), 1.25mm thickness(G)

Part number 1	Part number 2	Rated voltage	Tempe	rature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
i art number i		[V]	charact	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	NOLE
JMJ212CB7106[]GHT		6.3		X7R	10 <i>µ</i>	±10, ±20	10	150	1.25+0.25/-0	*1, *2
EMJ212CB7225[]GHT		16		X7R	2.2 μ	±10, ±20	10	150	1.25+0.25/-0	*1, *2
EMJ212CB7475[]GHT		10		X7R	4.7 μ	±10, ±20	10	150	1.25+0.25/-0	*1, *2
TMJ212CB7225[]GHT		25		X7R	2.2 μ	±10, ±20	10	150	1.25+0.25/-0	*1, *2
GMJ212CB7105[GHT		35		X7R	1 μ	±10, ±20	10	150	1.25+0.25/-0	*1, *2
UMJ212BB7103[]GHT				X7R	0.01 µ	±10, ±20	2.5	200	1.25+0.20/-0	*1, *2
UMJ212BB7223[]GHT				X7R	0.022 µ	±10, ±20	2.5	200	1.25+0.20/-0	*1, *2
UMJ212BB7473[]GHT				X7R	0.047 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
UMJ212BB7104[]GHT		50		X7R	0.1 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
UMJ212BB7224[]GHT				X7R	0.22 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
UMJ212CC7474[GHTE				X7S	0.47 μ	±10, ±20	3.5	150	1.25+0.25/-0	*1, *2
UMJ212CB7105[]GHT				X7R	1 μ	±10, ±20	10	150	1.25+0.25/-0	*1, *2
HMJ212KB7102[]DHT				X7R	1000 p	±10, ±20	3.5	200	0.85 ± 0.15	*1, *2
HMJ212KB7222[]DHT				X7R	2200 p	±10, ±20	3.5	200	0.85 ± 0.15	*1, *2
HMJ212BB7472[]GHT				X7R	4700 p	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
HMJ212BB7103[]GHT				X7R	0.01 µ	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
HMJ212BB7223[]GHT		100		X7R	0.022 µ	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
HMJ212BB7473[]GHT				X7R	0.047 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
HMJ212BB7104[]GHT				X7R	0.1 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
HMJ212BB7224[]GHT				X7R	0.22 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
HMJ212CC7474[GHTE				X7S	0.47 μ	±10, ±20	3.5	150	1.25+0.25/-0	*1, *2
QMJ212KB7102[]DHT				X7R	1000 p	±10, ±20	2.5	150	0.85 ± 0.15	*1, *2
QMJ212KB7222[]DHT				X7R	2200 p	±10, ±20	2.5	150	0.85 ± 0.15	*1, *2
QMJ212BB7472[GHT		250		X7R	4700 p	±10, ±20	2.5	150	1.25+0.20/-0	*1, *2
QMJ212BB7103[GHT				X7R	0.01 µ	±10, ±20	2.5	150	1.25+0.20/-0	*1, *2
QMJ212BB7223[]GHT				X7R	0.022 μ	±10, ±20	2.5	150	1.25+0.20/-0	*1, *2

316TYPE (Dimension:3.2×1.6mm JIS:3216 EIA:1206)

[Temperature Characteristic B7 : X7R , C7 : X7S] 1.15mm thickness(F) , 1.6mm thickness(L)

Part number 1	Part number 2	Rated voltage	Tempe	erature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Part number 1	Part number 2	[V]	charact	teristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
LMJ316BB7226[LHT		10		X7R	22 μ	±10, ±20	10	150	1.6±0.30	*1, *2
EMJ316BB7475[LHT		16		X7R	4.7 μ	±10, ±20	10	150	1.6 ± 0.30	*1, *2
EMJ316BB7106[LHT		10		X7R	10 <i>µ</i>	±10, ±20	10	150	1.6 ± 0.30	*1, *2
TMJ316BB7474[LHT				X7R	0.47 μ	±10, ±20	3.5	200	1.6 ± 0.30	*1, *2
TMJ316BB7475[]LHT		25		X7R	4.7 μ	±10, ±20	10	150	1.6 ± 0.30	*1, *2
TMJ316BB7106[]LHT				X7R	10 <i>µ</i>	±10, ±20	10	150	1.6 ± 0.30	*1, *2
GMJ316BB7474[LHT				X7R	0.47 μ	±10, ±20	3.5	200	1.6 ± 0.30	*1, *2
GMJ316AB7225[]LHT		35		X7R	2.2 μ	±10, ±20	10	150	1.6±0.20	*1, *2
GMJ316BB7475[]LHT				X7R	4.7 μ	±10, ±20	10	150	1.6 ± 0.30	*1, *2
GMJ316BB7106[LHT				X7R	10 <i>µ</i>	±10, ±20	10	150	1.6 ± 0.30	*1, *2
UMJ316BB7473[LHT				X7R	0.047 μ	±10, ±20	3.5	200	1.6 ± 0.30	*1, *2
UMJ316BB7104[]LHT				X7R	0.1 μ	±10, ±20	3.5	200	1.6 ± 0.30	*1, *2
UMJ316BB7224[]LHT				X7R	0.22 μ	±10, ±20	3.5	200	1.6 ± 0.30	*1, *2
UMJ316BB7474[]LHT		50		X7R	0.47 μ	±10, ±20	3.5	200	1.6±0.30	*1, *2
UMJ316BB7105[LHT]		X7R	1μ	±10, ±20	3.5	200	1.6±0.30	*1, *2
UMJ316AB7225[]LHT				X7R	2.2 μ	±10, ±20	10	150	1.6±0.20	*1, *2
UMJ316BC7475[LHTE				X7S	4.7 μ	±10, ±20	2.5	150	1.6 ± 0.30	*1, *2

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

TAIYO YUDEN 2018

PART NUMBER

Part number 1	Part number 2	Rated voltage [V]	Temperature characteristics	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
HMJ316 B7102[FHT			X7R	1000 p	±10, ±20	3.5	200	1.15±0.10	*1, *2
HMJ316 B7222[]FHT			X7R	2200 p	±10, ±20	3.5	200	1.15±0.10	*1, *2
HMJ316 B7472[]FHT			X7R	4700 p	±10, ±20	3.5	200	1.15±0.10	*1, *2
HMJ316KB7103[]FHT			X7R	0.01 µ	±10, ±20	3.5	200	1.15 ± 0.20	*1, *2
HMJ316BB7223[]LHT			X7R	0.022 µ	±10, ±20	3.5	200	1.6±0.30	*1, *2
HMJ316BB7473[LHT		100	X7R	0.047 μ	±10, ±20	3.5	200	1.6±0.30	*1, *2
HMJ316BB7104[]LHT			X7R	0.1 μ	±10, ±20	3.5	200	1.6±0.30	*1, *2
HMJ316BB7224[]LHT			X7R	0.22 μ	±10, ±20	3.5	200	1.6±0.30	*1, *2
HMJ316BB7474[]LHT			X7R	0.47 μ	±10, ±20	3.5	200	1.6 ± 0.30	*1, *2
HMJ316BB7105[LHT			X7R	1 μ	±10, ±20	3.5	200	1.6 ± 0.30	*1, *2
HMJ316BC7225[]LHTE			X7S	2.2 μ	±10, ±20	3.5	150	1.6 ± 0.30	*1, *2
QMJ316 B7102[]FHT			X7R	1000 p	±10, ±20	2.5	150	1.15 ± 0.10	*1, *2
QMJ316 B7222[]FHT			X7R	2200 p	±10, ±20	2.5	150	1.15±0.10	*1, *2
QMJ316 B7472[]FHT			X7R	4700 p	±10, ±20	2.5	150	1.15±0.10	*1, *2
QMJ316KB7103[FHT		250	X7R	0.01 µ	±10, ±20	2.5	150	1.15±0.20	*1, *2
QMJ316BB7223 LHT			X7R	0.022 μ	±10, ±20	2.5	150	1.6±0.30	*1, *2
QMJ316BB7473[LHT			X7R	0.047 μ	±10, ±20	2.5	150	1.6±0.30	*1, *2
QMJ316BB7104[LHT			X7R	0.1 μ	±10, ±20	2.5	150	1.6±0.30	*1, *2
SMJ316 B7102[]FHT			X7R	1000 p	±10, ±20	2.5	120	1.15±0.10	*1, *2
SMJ316 B7222[]FHT			X7R	2200 p	±10, ±20	2.5	120	1.15±0.10	*1, *2
SMJ316 B7472[]FHT		630	X7R	4700 p	±10, ±20	2.5	120	1.15±0.10	*1, *2
SMJ316KB7103[FHT			X7R	0.01 µ	±10, ±20	2.5	120	1.15±0.20	*1, *2
SMJ316BB7223[]LHT			X7R	0.022 µ	±10, ±20	2.5	120	1.6±0.30	*1, *2

325TYPE (Dimension:3.2 × 2.5mm JIS:3225 EIA:1210)

[Temperature Characteristic B7 : X7R , C7 : X7S] 1.9mm thickness(N) , 2.5mm thickness(M)

Part number 1	Part number 2	Rated voltage [V]	Tempe charact	erature eristics	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
JMJ325KB7476[]MHP		6.3		X7R	47 μ	±10, ±20	10	150	2.5±0.30	*1, *2
EMJ325KB7226[]MHP		16		X7R	22 μ	±10, ±20	10	150	2.5±0.30	*1, *2
TMJ325AB7475[]MHP		25		X7R	4.7 μ	±10, ±20	5	150	2.5 ± 0.30	*1, *2
TMJ325KB7106[]MHP		25		X7R	10 <i>µ</i>	±10, ±20	10	150	2.5 ± 0.30	*1, *2
GMJ325AB7475[]MHP		35		X7R	4.7 μ	±10, ±20	5	150	2.5 ± 0.30	*1, *2
GMJ325KB7106[]MHP				X7R	10 <i>µ</i>	±10, ±20	10	150	2.5 ± 0.30	*1, *2
UMJ325AB7225[]MHP				X7R	2.2 μ	±10, ±20	3.5	200	2.5 ± 0.30	*1, *2
UMJ325AB7475[]MHP		50		X7R	4.7 μ	±10, ±20	5	150	2.5 ± 0.30	*1, *2
UMJ325KB7106[]MHP				X7R	10 <i>µ</i>	±10, ±20	10	150	2.5 ± 0.30	*1, *2
HMJ325 B7223[]NHT				X7R	0.022 µ	±10, ±20	3.5	200	1.9±0.20	*1, *2
HMJ325 B7473[]NHT				X7R	0.047 μ	±10, ±20	3.5	200	1.9±0.20	*1, *2
HMJ325 B7104[]NHT				X7R	0.1 μ	±10, ±20	3.5	200	1.9±0.20	*1, *2
HMJ325 B7224[]NHT		100		X7R	0.22 μ	±10, ±20	3.5	200	1.9±0.20	*1, *2
HMJ325 B7474[]NHT		100		X7R	0.47 μ	±10, ±20	3.5	200	1.9±0.20	*1, *2
HMJ325 B7105[]NHT				X7R	1μ	±10, ±20	3.5	200	1.9±0.20	*1, *2
HMJ325AB7225[]MHP				X7R	2.2 μ	±10, ±20	3.5	200	2.5 ± 0.30	*1, *2
HMJ325KC7475[]MHPE				X7S	4.7 μ	±10, ±20	3.5	150	2.5 ± 0.30	*1, *2
QMJ325 B7223[]NHT				X7R	0.022 µ	±10, ±20	2.5	150	1.9 ± 0.20	*1, *2
QMJ325 B7473[NHT		250		X7R	0.047 μ	±10, ±20	2.5	150	1.9 ± 0.20	*1, *2
QMJ325 B7104[]NHT		230		X7R	0.1 μ	±10, ±20	2.5	150	1.9±0.20	*1, *2
QMJ325 B7224[]NHT				X7R	0.22 μ	±10, ±20	2.5	150	1.9±0.20	*1, *2
SMJ325 B7223[]NHT		630		X7R	0.022 µ	±10, ±20	2.5	120	1.9±0.20	*1, *2
SMJ325 B7473[]NHT		030		X7R	0.047 μ	±10, ±20	2.5	120	1.9 ± 0.20	*1, *2

<u>LW Reversal Decoupling Capacitors (LWDCTM)</u> ●105TYPE (Dimension:0.52 × 1.0mm JIS:0510 EIA:0204)

[Temperature Characteristic BJ : X5R] 0.3mm thickness(P)

Part number 1	Part number 2	Rated voltage [V]	Temper characte		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
TWK105 BJ104MPHF		25		X5R	0.1 μ	±20	5	150	0.3 ± 0.05	*1, *2
EWK105 BJ224MPHF		16		X5R	0.22 μ	±20	10	150	0.3 ± 0.05	*1, *2
LWK105 BJ474MPHF		10		X5R	0.47 μ	±20	10	150	0.3 ± 0.05	*1, *2
AWK105 BJ105MPHF		4		X5R	1 μ	±20	10	150	0.3 ± 0.05	*1, *2

[Temperature Characteristic C6 : X6S , C7 : X7S] 0.3mm thickness(P)

Part number 1	Part number 2	Rated voltage	Tempe	erature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Part number 1	Part number 2	[V]	charact	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
EWK105 C6104MPHF		16		X6S	0.1 μ	±20	5	150	0.3 ± 0.05	*1, *2
LWK105 C7104MPHF		10		X7S	0.1 μ	±20	5	150	0.3 ± 0.05	*1, *2
LWK105 C6224MPHF		10		X6S	0.22 μ	±20	10	150	0.3 ± 0.05	*1, *2
JWK105 C7104MPHF				X7S	0.1 μ	±20	5	150	0.3 ± 0.05	*1, *2
JWK105 C7224MPHF		6.3		X7S	0.22 μ	±20	10	150	0.3 ± 0.05	*1, *2
JWK105 C6474MPHF				X6S	0.47 μ	±20	10	150	0.3±0.05	*1, *2
AWK105 C7224MPHF		4		X7S	0.22 μ	±20	10	150	0.3 ± 0.05	*1, *2
AWK105 C6474MPHF		4		X6S	0.47 μ	±20	10	150	0.3±0.05	*1, *2

•107TYPE (Dimension:0.8 × 1.6mm JIS:0816 EIA:0306) [Temperature Characteristic BJ : X5R] 0.5mm thickness(V)

Part number 1	Part number 2	Rated voltage [V]	Temper characte		Capacitance [F]	Capacitance tolerance [%]	tanδ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
LWK107 BJ105MVHT		10		X5R	1μ	±20	10	150	0.5 ± 0.05	*1, *2
JWK107 BJ225MVHT		6.3		X5R	2.2 μ	±20	10	150	0.5 ± 0.05	*1, *2
JWK107 BJ475MVHT		0.3		X5R	4.7 μ	±20	10	150	0.5 ± 0.05	*1, *2

[Temperature Characteristic B7 : X7R , C6 : X6S , C7 : X7S] 0.5mm thickness(V)

Part number 1	Part number 2	Rated voltage		rature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
		[V]	charact	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [IIIII]	11010
TWK107 B7104MVHT		25		X7R	0.1 μ	±20	5	150	0.5 ± 0.05	*1, *2
EWK107 B7224MVHT		16		X7R	0.22 μ	±20	5	150	0.5 ± 0.05	*1, *2
EWK107 B7474MVHT		10		X7R	0.47 μ	±20	5	150	0.5 ± 0.05	*1, *2
LWK107 B7474MVHT		10		X7R	0.47 μ	±20	5	150	0.5 ± 0.05	*1, *2
JWK107 C7105MVHT		6.3		X7S	1μ	±20	10	150	0.5 ± 0.05	*1, *2
AWK107 C6225MVHT		4		X6S	2.2 μ	±20	10	150	0.5 ± 0.05	*1, *2
AWK107 C6475MVHT		4		X6S	4.7 μ	±20	10	150	0.5 ± 0.05	*1, *2

212TYPE (Dimension:1.25 × 2.0mm JIS:1220 EIA:0508)

[Temperature Characteristic BJ : X5R] 0.85mm thickness(D)

Part number 1	Part number 2	Rated voltage [V]	Tempe charact	rature eristics	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
LWK212 BJ475[DHT		10		X5R	4.7 μ	±10, ±20	10	150	0.85 ± 0.10	*1, *2
JWK212 BJ106MDHT		6.3		X5R	10 <i>µ</i>	±20	10	150	0.85±0.10	*1, *2
AWK212 BJ226MDHT		4		X5R	22 μ	±20	10	150	0.85±0.10	*1, *2

[Temperature Characteristic C6 : X6S] 0.85mm thickness(D)

	Part number 1	Part number 2	Rated voltage [V]	Tempe charact		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
J١	WK212 C6475[]DHT		6.3		X6S	4.7 μ	±10, ±20	10	150	0.85 ± 0.10	*1, *2

- All the Multilayer Ceramic Capacitors of the catalog lineup are RoHS compliant.
- Capacitance tolerance code is applied to [] of part number.
- · All the Multilayer Ceramic Capacitors in the catalog lineup are applicable for reflow-soldering.

Note)

• The exchange of individual specifications is necessary depending on the application and circuit condition. Please contact Taiyo Yuden sales channels.

- *1: Automotive (AEC-Q200 Qualified) products
 - < AEC-Q200 : AEC-Q200 qualified>
 - All the Multilayer Ceramic Capacitors of *1 marks are tested based on the test conditions and methods defined in AEC-Q200 family item.
 - 125°C products: AEC-Q200 Grade1 (we conduct the evaluation at the test condition of Grade1.)
 - Please consult with TAIYO YUDEN's official sales channel for the details of the product specification and AEC-Q200 test results, etc., and please review and approve TAIYO YUDEN's product specification before ordering.

*3: For standard case size, please kindly refer to @Dimension, @Dimension tolerance, @Thickness and STANDARD EXTERNAL DIMENSIONS.

High Reliability Application Multilayer Ceramic Capacitors

105TYPE (Demension:1.0 × 0.5mm JIS:1005 EIA:0402)

[Temperature Characteristic B7 : X7R] 0.5mm thickness(V)

Part number 1	Part number 2	Rated voltage	Tempe	rature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Part number 1	Part number 2	[V]	charact	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	note
UMF105 B7102[]VHF				X7R	1000 p	±10, ±20	2.5	200	0.5 ± 0.05	*1
UMF105 B7472[]VHF		50		X7R	4700 p	±10, ±20	2.5	150	0.5 ± 0.05	*1
UMF105 B7103[]VHF				X7R	0.01 µ	±10, ±20	3.5	150	0.5 ± 0.05	*1
TMF105 B7102[]VHF				X7R	1000 p	±10, ±20	2.5	200	0.5 ± 0.05	*1
TMF105 B7472[]VHF		25		X7R	4700 p	±10, ±20	2.5	150	0.5 ± 0.05	*1
TMF105 B7103[]VHF		25		X7R	0.01 µ	±10, ±20	3.5	200	0.5 ± 0.05	*1
TMF105 B7223[]VHF				X7R	0.022 µ	±10, ±20	3.5	150	0.5 ± 0.05	*1
EMF105 B7102[]VHF				X7R	1000 p	±10, ±20	2.5	200	0.5 ± 0.05	*1
EMF105 B7472[]VHF				X7R	4700 p	±10, ±20	2.5	150	0.5 ± 0.05	*1
EMF105 B7103[]VHF		16		X7R	0.01 µ	±10, ±20	3.5	200	0.5 ± 0.05	*1
EMF105 B7223[]VHF				X7R	0.022 µ	±10, ±20	3.5	150	0.5 ± 0.05	*1
EMF105 B7104[]VHF				X7R	0.1 μ	±10, ±20	5	150	0.5 ± 0.05	*1
LMF105 B7102[]VHF				X7R	1000 p	±10, ±20	2.5	200	0.5 ± 0.05	*1
LMF105 B7472[]VHF				X7R	4700 p	±10, ±20	2.5	150	0.5 ± 0.05	*1
LMF105 B7103[]VHF		10		X7R	0.01 µ	±10, ±20	3.5	200	0.5 ± 0.05	*1
LMF105 B7223[]VHF				X7R	0.022 µ	±10, ±20	3.5	150	0.5 ± 0.05	*1
LMF105 B7104[]VHF				X7R	0.1 μ	±10, ±20	5	200	0.5 ± 0.05	*1

107TYPE (Dimension:1.6 × 0.8mm JIS:1608 EIA:0603)

[Temperature Characteristic B7 : X7R] 0.8mm thickness(A)

Part number 1	Part number 2	Rated voltage	Tempe	rature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Fart number 1	Fart number 2	[V]	charact	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Inickness [mm]	Note
UMF107 B7104[]AHT		50		X7R	0.1 μ	±10, ±20	3.5	200	0.8±0.10	*1
TMF107 B7104[]AHT		25		X7R	0.1 μ	±10, ±20	3.5	200	0.8±0.10	*1
EMF107 B7104[]AHT		16		X7R	0.1 μ	±10, ±20	3.5	200	0.8±0.10	*1
EMF107 B7105[]AHT		10		X7R	1 μ	±10, ±20	10	150	0.8±0.10	*1
LMF107 B7104[]AHT		10		X7R	0.1 μ	±10, ±20	3.5	200	0.8±0.10	*1
LMF107 B7105[]AHT		10		X7R	1 μ	±10, ±20	10	150	0.8±0.10	*1

•212TYPE (Dimension:2.0 × 1.25mm JIS:2012 EIA:0805)

Part number 1	Part number 2	Rated voltage [V]	Temperature characteristic	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
UMF212 B7473[]GHT		50	X7F	0.047 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1
TMF212 B7473[]GHT		25	X7F	0.047 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1
EMF212 B7473[]GHT		16	X7F	0.047 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1
EMF212AB7475[]GHT		10	X7F	4.7 μ	±10, ±20	10	150	1.25+0.15/-0.05	*1
LMF212 B7473[]GHT		10	X7F	0.047 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1
LMF212 B7475[]GHT		10	X7F	4.7 μ	±10, ±20	10	150	1.25 ± 0.10	*1

316TYPE (Dimension:3.2 × 1.6mm JIS:3216 EIA:1206) [Temperature Characteristic B7 : X7R] 1.6mm thickness(L)

Part number 1	Part number 2	Rated voltage [V]	Tempe charact		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
LMF316AB7106[LHT		10		X7R	10 <i>µ</i>	±10, ±20	10	150	1.6±0.20	*1
JMF316AB7106 LHT		6.3		X7R	10 <i>µ</i>	±10, ±20	10	150	1.6±0.20	*1

325TYPE (Dimension:3.2 × 2.5mm JIS:3225 EIA:1210)

[Temperature Characteristic B7 : X7R] 2.5mm thickness(M)

Part number 1	Part number 2	Rated voltage [V]	Temper characte		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
UMF325 B7475[]MHP		50		X7R	4.7 μ	±10, ±20	5	150	2.5 ± 0.20	*1
TMF325 B7475[]MHP		25		X7R	4.7 μ	±10, ±20	5	150	2.5±0.20	*1
EMF325 B7475[]MHP		16		X7R	4.7 μ	±10, ±20	5	150	2.5±0.20	*1
LMF325 B7475[]MHP		10		X7R	4.7 μ	±10, ±20	5	150	2.5 ± 0.20	*1

Multilayer Ceramic Capacitors

PACKAGING

①Minimum Quantity

_ ()	Thick	ness	Standard o	uantity [pcs]
Type(EIA)	mm	code	Paper tape	Embossed tape
□MK021(008004)	0.105	к		50000
□VS021(008004)	0.125	n	_	50000
MK042(01005)	0.2	C, D		40000
□VS042(01005)	0.2	С		40000
□MK063(0201)	0.3	P,T	15000	—
□WK105(0204) 💥	0.3	Р	10000	_
	0.13	Н	_	20000
	0.18	E	_	15000
□MK105(0402)	0.2	С	20000	-
□MF105(0402)	0.3	Р	15000	-
	0.5	V	10000	_
□VK105(0402)	0.5	W	10000	-
MK107(0603)	0.45	К	4000	-
□WK107(0306) ※	0.5	V	-	4000
□MF107(0603)	0.8	А	4000	-
□VS107(0603)	0.7	С	4000	-
□MJ107(0603)	0.8	А	3000	3000
□MK212(0805)	0.45	К	4000	
□WK212(0508) ※	0.85	D	4000	_
□MF212(0805)	1.25	G	_	3000
□VS212(0805)	0.85	D	4000	_
	0.85	D	4000	_
□MJ212(0805)	1.25	G	-	2000
	0.85	D	4000	-
□MK316(1206)	1.15	F	_	3000
□MF316(1206)	1.6	L	-	2000
	1.15	F	-	3000
□MJ316(1206)	1.6	L	_	2000
	0.85	D		
	1.15	F		
□MK325(1210)	1.9	Ν	7 -	2000
□MF325(1210)	2.0max.	Y	1	
	2.5	М	_	1000
	1.9	Ν	—	2000
□MJ325(1210)	2.5	М	—	500(T), 1000(P)
□MK432(1812)	2.5	М	-	500

Note : 💥 LW Reverse type.

(2) Taping material

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

TAIYO YUDEN

3 Representative taping dimensions

Type(EIA)	Chip Cavity		Insertion Pitch	Tape Tł	Thickness	
Type(EIA)	А	В	F	Т	T1	
□MK063(0201)	0.37	0.67		0.45max.	0.42max.	
□WK105(0204) ※			2.0 ± 0.05	0.451118X.	0.4211188.	
□MK105(0402) (*1 C)	0.65	1.15	2.0±0.05	0.4max.	0.3max.	
□MK105(0402) (*1 P)				0.45max.	0.42max.	
Note *1 Thickness, C:0.2mm ,P:0.3mm. ※ LW Reverse type.						

Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness
Type(EIA)	A	В	F	Т
□MK105 (0402) □MF105 (0402) □VK105 (0402)	0.65	1.15	2.0±0.05	0.8max.

Unit:mm

Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness
Type(LIA)	А	В	F	Т
□MK107(0603)				
□WK107(0306) 💥	1.0	1.8		1.1max.
□MF107(0603)			40104	
MK212(0805)	1.05	0.4	4.0±0.1	1.1max.
□WK212(0508) 💥	1.65	2.4		
DMK316(1206)	2.0	3.6		
Note:Taping size might	be different depending on	the size of the product.	※ LW Reverse type.	Unit : mm

 0.9 ± 0.05

Note: Taping size might be different depending on the size of the product. % LW Reverse type.

Type(EIA)	Chip Cavity		Insertion Pitch	Tape Tł	nickness	
Type(EIA)	А	В	F	К	Т	
□MK021(008004)	0.135	0.07	1.0±0.02			
□VS021(008004)	0.135	0.27		0.5max.	0.25max.	
□MK042(01005)	0.23	0.40				
□VS042(01005)	0.23	0.43				

Unit:mm(inch)

Unit:mm

Type(EIA)	Chip Cavity		Insertion Pitch	Tape Tł	nickness
Type(EIA)	А	В	F	К	Т
□MK105(0402)	0.6	1.1	2.0±0.1	0.6max	0.2±0.1
□WK107(0306) ※	1.0	1.8		1.3max.	0.25 ± 0.1
□MK212(0805)	1.65	2.4			
DMF212(0805)	1.00	2.4	4.0±0.1	3.4max.	0.6max.
□MK316(1206)	2.0	3.6			
□MF316(1206)	2.0	5.0			
□MK325(1210)	2.8	3.6			
□MF325(1210)	2.0	5.0			

Note: 💥 LW Reverse type.

Unit:mm

Type(EIA)	Chip (Chip Cavity		Tape Thickness	
Type(EIA)	A	В	F	К	Т
□MK325(1210)	3.1	4.0	8.0±0.1	4.0max.	0.6max.
□MK432(1812)	3.7	4.9	8.0±0.1	4.0max.	0.6max.

Unit : mm

④Trailer and Leader

⑤Reel size

А	В	С	D	E	R
ϕ 178±2.0	<i>ф</i> 50min.	ϕ 13.0±0.2	<i>ф</i> 21.0±0.8	2.0 ± 0.5	1.0
	Т	W			
4mm wide tape	1.5max.	5±1.0			
8mm wide tape	2.5max.	10±1.5	-		
12mm wide tape	2.5max.	14±1.5	Unit : mm		

6 Top Tape Strength

The top tape requires a peel-off force of 0.1 to 0.7N in the direction of the arrow as illustrated below.

RELIABILITY DATA

1.Operating Te	mperature Range								
	Temperature	Standard							
	Compensating(Class1)	High Frequency Type	- 55 to -	$-55 \text{ to } + 125^{\circ}\text{C}$					
			Specification	Temperature Range					
			BJ	В	-25 to +85°C				
Specified				X5R	−55 to +85°C				
Value				X7R	-55 to $+125^{\circ}$ C				
	High Permittivity (Class2)	C6	X6S	-55 to +105°C					
				X7S	-55 to +125°C				
				X7T	-55 to +125°C				
			LD(※)	X5R	$-55 \text{ to } +85^{\circ}\text{C}$				
			Note: 🔆	LD Low distortion k	high value multilayer ceramic capa	citor			

2. Storage Co	nditions								
	Temperature	Standard	55 to 1						
	Compensating(Class1)	High Frequency Type	- 55 to +	−55 to +125°C					
				Specification	Temperature Range				
				В	-25 to +85°C				
Specified	acified		BJ	X5R	-55 to +85°C				
Value			B7	X7R	−55 to +125°C				
	High Permittivity (Class2)	C6	X6S	$-55 \text{ to } +105^{\circ}\text{C}$				
				X7S	-55 to +125°C				
			D7	X7T	-55 to +125°C				
			LD(💥)	X5R	−55 to +85°C				
				LD Low distortion	high value multilayer ceramic capacitor				

3. Rated Voltage					
0 10 1	Specified Compensating(Class1)	Standard	50VDC, 25VDC		
Specified Value		High Frequency Type	50VDC, 25VDC		
High Permittivity (Class2))	50VDC, 35VDC, 25VDC, 16VDC, 10VDC, 6.3VDC, 4VDC, 2.5VDC		

4. Withstanding	4. Withstanding Voltage(Between terminals)						
	Temperature		Standard				
Specified Value	Specified Compensating(Class1)	High F	requency Type	y Type No breakdown or damage			
	High Permittivity (Class2)						
Test		Cla		Class 1 Class 2			
Test Methods and	Applied voltage Rated		volta × 3	Rated voltage × 2.5			
Remarks	Duration			1 to 5 sec.			
i temar 65	Charge/discharge currer	nt		50mA	max.	7	

5. Insulation Re	5. Insulation Resistance						
	Temperature	Standard	10000 MΩmin.				
Specified Compensating(Class1)	High Frequency Type	1 0000 Wi Sz min.					
Value I	High Permittivity(Class2)	Note 1	C≦0.047 μF : 10000 MΩ min. C>0.047 μF : 500MΩ• μF				
Test	Applied voltage	: Rated voltage					
Methods and	Duration	:60±5 sec.					
Remarks	Charge/discharge current	: 50mA max.					

6. Capacitance	(Tolerance)					
	Temperature Compensating(Class1)	Standard	C□ U□ SL	0.2pF≦C≦5pF 0.2pF≦C≦10pF C>10pF	: ±0.25pF : ±0.5pF : ±5% or ±10%	
Specified Value	Compensating (Class I)	High Frequency Type	СН	0.3pF≦C≦2pF C>2pF	: ±0.1pF : ±5%	
	High Permittivity (Class2)			7, C6, C7, D7, LD(※):: ※LD Low distortion hig	$\pm 10\%$ or $\pm 20\%$ gh value multilayer ceramic	capacitor
			Clas	ss 1	Cla	ass 2
т .		Standard	d High Frequency Type		C≦10 <i>µ</i> F	C>10 µF
Test Mathada and	Preconditioning		None		Thermal treatment (a	t 150°C for 1hr) Note 2
Methods and Remarks	Measuring frequency		1MHz±10%		1kHz±10%	120±10Hz
rtemarks	Measuring voltage Note		0.5 to	5Vrms	1±0.2Vrms	0.5±0.1rms
	Bias application				one	

Specified Value	Temperature	Standard		$C < 30pF : Q \ge 400 + 20C$ $C \ge 30pF : Q \ge 1000 \qquad (C:Nominal capacitance)$				
	Compensating(Class1)	High Frequency Type		Refer	to detailed specification			
	High Permittivity (Class2) Note 1		1	BJ, B	7, C6, C7, D7:2.5% max.			
				Class 1		Class 2		
			Standard		High Frequency Type	C≦10 <i>µ</i> F	C>10 µF	
	Preconditioning				one	Thermal treatment (at	150°C for 1hr) Note 2	
Test	Measuring frequey		1MHz±10	0% 1GHz		1kHz±10%	$120\pm10Hz$	
Methods and	Measuring voltage Note 1		0.5 to 5Vrms 1±0.2Vrms 0.5±0.1Vrr					
Remarks	Bias application			None				
	High Frequency Type							
	Measuring equipment	: HP	4291A					
	Measuring jig	: HP	16192A					

8. Temperatur	re Characteristic (Without vo	ltage application)							
				Temperature Characteristic [ppm/°C]				rance [ppm/°C]	
			C□ :	0	CG,CH, CJ, (∩K		G:±30	
		Standard	00.	0	00,011, 00, 0	UK .		H:±60	
	Temperature	Stanuaru	U🗆 :	- 750	UJ, UK			J:±120	
	Compensating(Class1)							K:±250	
			SL :	+350 to -100	0				
		High Frequency Type	Tem	perature Charac	teristic [ppm/°	C]	Toler	rance [ppm/°C]	
		Figh Frequency Type	C□ :	0	CH			H:±60	
Specified					Capacitance	Ret	ference		
/alue				Specification	change	tem	perature	Temperature Range	
				В	±10%	:	20°C	−25 to +85°C	
			BJ	X5R	±15%	:	25°C	−55 to +85°C	
High Permi	High Permittivity (Class2			X7R	±15%	25°C		−55 to +125°C	
	High Permittivity (Glassz				±22%	:	25°C	−55 to +105°C	
					±22%	:	25°C	−55 to +125°C	
					+22/-33%		25°C	−55 to +125°C	
					±15%	:	25°C	−55 to +85°C	
					Note : XLD Low distortion high value multilayer ceramic capacitor				
	Class 1 Capacitance at 20°C and following equation. $\frac{(C_{85}-C_{20})}{C_{20}\times\Delta T} \times T$	10^{6} (ppm/°C)	d in thern T=65	nal equilibrium, a	and the tempera	ture c	haracteris	tic shall be calculated	l from t
est lethods and Remarks	Class 2 Capacitance at each step equation.	shall be measured in the	ermal equ	librium, and the	temperature cha	aracter	istic shall	be calculated from th	e followi
	Step	В		X5R、X7R、X6S、	X7S、X7T				
	1	Minimum ope	erating te						
	2	20°C		25°C					
	3	Maximum ope	erating te	mperature					

 $\frac{(C-C_2)}{C_2} \times 100(\%)$

C : Capacitance in Step 1 or Step 3 C2 : Capacitance in Step 2

9. Deflection Appearance : No abnormality Standard Capacitance change : Within $\pm 5\%$ or ± 0.5 pF, whichever is larger. Temperature Compensating(Class1) Appearance : No abnormality Specified High Frequency Type Cpaitance change : Within $\pm 0.5 \text{ pF}$ Value Appearance : No abnormality High Permittivity (Class2) Capacitance change : Within ±12.5% (BJ, B7, C6, C7, D7, LD(🔆)) Note: XLD Low distortion high value multilayer ceramic capacitor Multilayer Ceramic Capacitors ^{**1}105 Type 042, 063, The other types Board Glass epoxy-resin substrate Warr Test Thickness 0.8mm 1.6mm Methods and Warp 1mm (Soft Termination type:3mm) Remarks Duration 10 sec. ^{*1:}105 Type thickness, C: 0.2mm ,P: 0.3mm. (Unit: mm) Capacitance measurement shall be conducted with the board bent

10. Body Stren	gth		
0.15.1	Temperature	Standard	1
Specified Value	Compensating(Class1)	High Frequency Type	No mechanical damage.
	High Permittivity (Class2))	1
Test Methods and Remarks	High Frequency Type Applied force : 5N Duration : 10 sec.	← A → X	R0.5 Pressing jig Chip Chip

11. Adhesive S	trength of Terminal Elec	trodes						
	Temperature	Standard						
Specified Value	Compensating(Class1)) High Frequency Ty	be No terminal separati	No terminal separation or its indication.				
Value	High Permittivity (Cla	ss2)						
		Multilayer Cera	mic Capacitors	Hooked jig				
Test		042, 063 Type	105 Type or more					
Methods and	Applied force	2N	5N	R=05 Deard				
Remarks	Duration	30±5	5 sec.					

12. Solderability	ļ					
Specified Value	Temperature	Standard				
	Compensating(Class1)	High Frequency Type	At least 95% of terminal electrode is covered b			
	High Permittivity (Class2))				
Test		Eutectic so	older	Lead-free solder		
Test Methods and	Solder type	H60A or H	63A	A Sn-3.0Ag-0.5Cu		
Remarks Solder temperature		230±5°	С	245±3°C		
Remarks	Duration		4 ±1	1 sec.		

13. Resistance	to Soldering		
	Temperature	Standard	Appearance: No abnormalityCapacitance change: Within ±2.5% or ±0.25pF, whichever is larger.Q: Initial valueInsulation resistance: Initial valueWithstanding voltage(between terminals) : No abnormality
Specified Value	Compensating(Class1) High Frequency Type	Appearance : No abnormality Capacitancecange : Within ±2.5% Q : Initial value Insulation resistance : Initial value Withstanding voltage (between terminals) : No abnormality
	High Permittivity(Cla	ss2) Note 1	Appearance: No abormalityCapactace change: Within ±7.5% (BJ, B7, C6, C7, D7, LD(X))Dissipation factor: Initial valueInsulation resistance: Initial valueWithstanding voltage(between terminals): No abnormalityNote: XLD Low distortion high value multilayer ceramic capacitor
			lss 1
	Preconditioning	042, 063 Type	105 Type None
			$80 \text{ to } 100^{\circ}\text{C} 2 \text{ to } 5 \text{ min}$
	Preheating	150°C, 1 to 2 min.	n. 150 to 200°C, 2 to 5 min.
	Solder temp.		270±5°C
	Duration		3±0.5 sec.
Test Methods and	Recovery	6 to 24 hrs	rs(Standard condition)Noe 5
Remarks			Class 2
		042、063 Type	105, 107, 212 Туре 316, 325 Туре
	Preconditioning		Thermal treatment (at 150°C for 1 hr) Note 2
	Preheating	150°C, 1 to 2 min.	80 to 100°C, 2 to 5 min. 80 to 100°C, 5 to 10 min.
	Saldau to ma		150 to 200°C, 2 to 5 min. 150 to 200°C, 5 to 10 min.
	Solder temp. Duration		270±5°C 3±0.5 sec.
	Recovery		24±2 hrs(Standard condition)Note 5
	Recovery		
		、	
14. Temperatu	re Cycle (Thermal Shock	.)	
	Temperature	Standard	Appearance : No abnormality Capacitance change : Within ±2.5% or ±0.25pF, whichever is larger. Q : Initial value Insulation resistance : Initial value Withstanding voltage (between terminals) : No abnormality
Specified Value	Compensating(Class1) High Frequency Type	Appearance : No abnormality Capacitance change : Within ±0.25pF Q : Initial value Insulation resistance : Initial value

Specified		High Frequency Type	Q	: Init	tial value		
Value			Insulation resistance	: Init	tial value		
			Withstanding voltage	(bet	tween terminals):N	lo abnormality	
			Appearance	: No	abnormality		
			Capacitance change	: Wit	hin \pm 7.5% (BJ, B7,	C6, C7, D7, LD(※)))
			Dissipation factor	: Init	ial value		
	High Permittivity (Class2	Insulation resistance	: Init	ial value			
		Withstanding voltage	(bet	ween terminals) : N	lo abnormality		
		Note: XLD Low distort	Note: XLD Low distortion high value multilayer ceramic capacitor				
			Class 1			Class 2	
	Ducconditioning		None		Thermal treatment (at 150°C for 1 hr)		
	Preconditioning	None			Note 2		
						<u>.</u>	
Test		Step	Tempera	ature	(°C)	Time(min.)	
		1	Minimum opera	iting t	emperature	30±3	
Methods and	1 cycle	2	Normal te	emper	erature 2 to 3		
Remarks		3	Maximum opera	ting 1	temperature	30±3	
		4	Normal te	emper	emperature 2 to 3		
	Number of cycles			5 tin	nes		
	Recovery	6 to 24 hrs(Sta	andard condition)Note 5		24±2 hrs(Standard condition)	Note 5

15. Humidity (Steady State)					
	Temperature Compensating(Class))	Appearance Capacitance change Q Insulation resistance	: Wit : C < 10 C	abnormality hin $\pm 5\%$ or ± 0.5 pF, whichever is larger. (10pF : Q \ge 200+10C 0 \le C<30pF : Q \ge 275+2.5C \ge 30pF:Q \ge 350(C:Nominal capacitance) 00 M Ω min.	
Specified Value		High Frequency Type	Appearance Capacitance change Insulation resistance	: No abnormality : Within ±0.5pF, : 1000 MΩmin.		
	High Permittivity(Cl	ass2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance Note: ※LD Low distor	Capacitance change : Within ±12.5% (BJ, B7, C6, C7, D7, LD(X)) Dissipation factor : 5.0% max. (BJ, B7, C6, C7, D7, LD(X))		
		Cla	lass 1		Class 2	
		Standard	High Frequency Typ	be	All items	
Test	Preconditioning	Ν	one		Thermal treatment (at 150°C for 1 hr) Note 2	
Methods and	Temperature	40±2°C	60±2°C		40±2°C	
Remarks	Humidity	90 to	95%RH		90 to 95%RH	
	Duration	500+2	4/−0 hrs		500+24/-0 hrs	
	Recovery	6 to 24 hrs(Standa	ard condition)Note 5		24 \pm 2 hrs(Standard condition)Note 5	

16. Humidity Lo	pading				
	Temperature	Standard	Appearance Capacitance change Q Insulation resistance	: No abnormality : Within $\pm 7.5\%$ or $\pm 0.75pF$, whichever is larger. : C $< 30pF$: Q $\ge 100 + 10C/3$ C $\ge 30pF$: Q ≥ 200 (C:Nominal capacitance) : 500 M Ω min.	
Specified Value	Compensating(Class1)	High Frequency Type	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
	High Permittivity(Class2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance Note: XLD Low distort	: No abnormality : Within $\pm 12.5\%$ (BJ, B7, C6, C7, D7, LD($\%$)) : 5.0% max. (BJ, B7, C6, C7, D7, LD($\%$)) : 25 M $\Omega\mu$ F or 500 M Ω whichever is smaller. ion high value multilayer ceramic capacitor	
		C	Class 1	Class 2	
		Standard	High Frequency Typ	e All items	
	Preconditioning		None	Voltage treatment (Rated voltage are applied for 1 hour at 40°C) Note 3	
Test	Temperature	40±2°C	60±2°C	40±2°C	
Methods and	Humidity	90 t	o 95%RH	90 to 95%RH	
Remarks	Duration	500+	24/—0 hrs	500+24/-0 hrs	
	Applied voltage	Rate	ed voltage	Rated voltage	
	Charge/discharge current	50r	mA max.	50mA max.	
	Recovery	6 to 24 hrs(Stan	dard condition)Note 5	24 ± 2 hrs(Standard condition) Note 5	

17. High Temp	erature Loading						
Temperature Compensating(Class1)		Standard	Appearance Capacitance change Q Insulation resistance	:C<10pF:Q≧ 10≦C<30pF: C≧30pF:Q≧	±0.3pF, whichever is 200+10C		
Specified Value		High Frequency Type Capacitance change Insulation resistance		: No abnormality : Within \pm 3% or \pm 0.3pF, whichever is larger. : 1000 M Ω min.			
	High Permittivity(Class2) Note 1		Appearance Capacitance change Dissipation factor Insulation resistance Note: XLD Low dist	: 5.0% max.(BJ, : 50 M <i>Ωμ</i> F or 10	(BJ, B7, C6, C7, D7 B7, C6, C7, D7, LD(※ 000 M Ω whichever is	()) smaller.	
		Clas	s 1	Class 2			
		Standard H	ligh Frequency Type	BJ, LD(🔆)	C6	B7, C7, D7	
	Preconditioning	Nor	None		Voltage treatment (Twice the rated voltage shall be applied for 1 hour at 85°C, 105°C or 125°C) Note 3, 4		
Test	Temperature	Maximum operatir	ng temperature	Maximum operating temperature			
Methods and	Duration	1000+48,	∕−0 hrs	1000+48/-0 hrs			
Remarks	Applied voltage	Rated vol	tage × 2	F	Rated voltage $\times 2$ Not	te 4	
	Charge/discharge current	50mA	max.	50mA max.			
	Recovery	6 to 24hr(Standard		24 ± 2 hrs (Standard condition) Note 5			

Note 1 The figures indicate typical specifications. Please refer to individual specifications in detail.

Note 2 Thermal treatment : Initial value shall be measured after test sample is heat-treated at $150+0/-10^{\circ}$ C for an hour and kept at room temperature for 24 ± 2 hours.

Note 3 Voltage treatment : Initial value shall be measured after test sample is voltage-treated for an hour at both the temperature and voltage specified in the test conditions, and kept at room temperature for 24±2hours.

Note 4 150% of rated voltage is applicable to some items. Please refer to their specifications for further information.

Note 5 Standard condition: Temperature: 5 to 35°C, Relative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa When there are questions concerning measurement results, in order to provide correlation data, the test shall be conducted under the following condition.

Temperature: 20±2°C, Relative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa Unless otherwise specified, all the tests are conducted under the "standard condition".

RELIABILITY DATA

1. Operating Temp	erature Range
	Temperature Compensating(High Frequency type) CG(C0G) : -55 to +125°C
Specified Value	High permittivity X7R, X7S : -55 to $+125^{\circ}$ C X5 : -55 to $+85^{\circ}$ C B : -25 to $+85^{\circ}$ C

2. Storage Temperature Range		
	Temperature Compensating(High Frequency type) CG(C0G) : -55 to $+125^{\circ}$ C	
Specified Value	High permittivity X7R, X7S : -55 to $+125^{\circ}$ C X5R : -55 to $+85^{\circ}$ C B : -25 to $+85^{\circ}$ C	

3. Rated Voltage	
Specified Value	100VDC(HMK,HMJ), 250VDC(QMK,QMJ,QVS), 630VDC(SMK,SMJ)

4. Withstanding Voltage (Between terminals)				
Specified Value	No breakdown or damage			
Test Methods and Remarks	Applied voltage Duration Carge/discharge current	: Rated voltage × 2.5(HMK,HMJ), Rated voltage × 2(QMK,QMJ,QVS), Rated voltage × 1.2(SMK,SMJ) : 1 to 5sec. : 50mA max.		

5. Insulation Resistance				
Specified Value	Temperature Compensating(High Frequency type) 10000M Ω min High permittivity 100M $\Omega\mu$ F or 10G Ω whichever is smaller.			
Test Methods and Remarks	Applied voltage Duration Charge/discharge current	: Rated voltage(HMK,HMJ, QMK,QMJ,QVS), 500V(SMK,SMJ) : 60±5sec. : 50mA max.		

6. Capacitance (Tolerance)				
Specified Value	Temperature Compensating(High Frequency type) $\pm 0.1 pF (C < 5 pF) \pm 0.25 pF (C < 10 pF) \pm 0.5 pF (5 pF \le C < 10 pF) \pm 2\%(C=10 pF) \pm 5\%(C \ge 10 pF)$ High permittivity $\pm 10\%, \pm 20\%$			
Test Methods and Remarks	Temperature Compensatir Measuring frequency Measuring voltage Bias application High permittivity Measuring frequency Measuring voltage Bias application	ng(High Frequency type) : 1MHz±10% : 0.5 to 5Vrms : None : 1kHz±10% : 1±0.2Vrms : None		

7. Q or Dissipation	Factor			
	Temperature Compensa	ating(High Frequency type)		
	C<30pF : Q≧800+20C			
	C≧30pF:Q≧1400	C:Normal Capacitance(/pF)		
Specified Value				
	High permittivity			
	3.5%max(HMK,HMJ)			
	2.5%max(QMK,QMJ, SMK,SMJ)			
	Temperature Compensating(High Frequency type)			
	Measuring frequency	: 1MHz±10%		
	Measuring voltage	: 0.5 to 5Vrms		
Test Methods and	Bas application	: None		
Remarks				
Kondiks	High permittivity			
	Measuring frequency	: 1kHz±10%		
	Measuring voltage	: 1±0.2Vrms		
	Bas application	: None		

8. Temperature Cha	aracteristic of Capacitance				
	Temperature Compensating(High Frequency type)COG:±30ppm(25 to +125°C)				
Specified Value	High permittivity B : $\pm 10\%(-25 \text{ to } +85^{\circ}\text{C})$ X5R : $\pm 15\%(-55 \text{ to } +85^{\circ}\text{C})$ X7R : $\pm 15\%(-55 \text{ to } +125^{\circ}\text{C})$ X7S : $\pm 22\%(-55 \text{ to } +125^{\circ}\text{C})$				
Test Methods and Remarks	Temperature Compensating(High Frequency type) Capacitance at 25°C and 85°C shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation. $\frac{(C_{85}-C_{25})}{C_{25} \times \Delta T}$ $\times 10^6 \times [ppm/^{\circ}C]$ High permittivity Capacitance value at each step shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation. Step B X5R, X7R, X7S				
Remarks	1 Minimum operating tempeature 2 20°C 25°C				
	2 200 250 3 Maximum operating temperature				
	$\frac{(C-C_2)}{C_2} \times 100(\%)$ C : Capacitance value in Step 1 or Step 3 C2 : Capacitance value in Step 2				

9. Deflection Yemperature Compensating(High Frequency type) Appearance : No abnormality Capacitance change :±5% or ±0.5pF, whichever is larger. High permittivity Appearance : No abnormality Capacitance change : No abnormality Capacitance change : Within±10%

	Capacitance of	change : Within±10%			
Test Methods and Remarks	Warp Duration Test board Thicknss	: 1mm (Soft Termination type:3mm) : 10sec. : Glass epoxy-resin substrate : 1.6mm	Board $\overrightarrow{B_{r-230}}$ Warp 45 ± 2 45 ± 2 (Unit: mm)		
	Capacitance measurement shall be conducted with the board bent.				

10. Adhesive Strength of Terminal Electrodes			
Specified Value	No terminal separation or its indication.		
Test Methods and Remarks	Temperature Compensating(High Frequency type)Applied force: 2NDuration: $10\pm 5 \text{ sec.}$ High permittivityApplied force: 5NDuration: $30\pm 5 \text{ sec.}$		

11. Solderability				
Specified Value	At least 95% of terminal electrode is covered by new solder			
		Eutectic solder	Lead-free solder	
Test Methods and	Solder type	H60A or H63A	Sn-3.0Ag-0.5Cu	
Remarks	Solder temperature	230±5°C	245±3°C	
	Duration	4±1	sec.	

12. Resistance to Soldering					
	Temperature Compensating(High Frequency type)				
	Appearance	: No abnormality			
	Capacitance change	: C \approx 10pF :±0.25pF C \approx 10pF :±2.5% \approx Normal capacitance			
	Insulation resistance	: Initial value			
	Withstanding voltage	(between terminals) : No abnormality			
Specified Value	High permittivity				
	Appearance	: No abnormality			
	Capacitance change	: Within $\pm 15\%$ (HMK,HMJ), $\pm 10\%$ (QMK,QMJ, SMK,SMJ)			
	Dissipation factor	: Inital value			
	Insulation resistance	: Initial value			
	Withstanding voltage	(between terminals) : No abnormality			
	Preconditioning	: Thermal treatment(at 150°C for 1hr) Note1 (Only High permittivity)			
Test Methods and	Solder temperature	: 270±5°C			
Remarks	Duration	: 3±0.5sec.			
Remarks	Preheating conditions	: 80 to 100°C, 2 to 5 min. 150 to 200°C, 2 to 5min.			
	Recovery	: 24 \pm 2hrs under the stadard condition Note3			

13. Temperature Cycle(Thermal Shock)					
	Temperature C	ompensating(High Frequency type)			
	Appearance	: No abnormality			
	Capacitance ch	nange : C‰≦10pF:±0.25% C‰>10pF	±2.5%		
	Insulation resis	tance : Initial value	: Initial value		
	Withstanding vo	oltage (between terminals):No abnormali	ty		
Specified Value	High permittivit	У			
	Appearance	: No abnormality			
	Capacitance ch	hange : Within $\pm 15\%$ (HMK,HMJ), $\pm 7.5\%$ (G	: Within±15%(HMK,HMJ), ±7.5%(QMK,QMJ, SMK,SMJ)		
	Dissipation fact	tor : Initial value	: Initial value		
	Insulation resis	tance : Initial value	: Initial value		
	Withstanding vo	oltage (between terminals) : No abnormali	ty		
	Preconditioning	Preconditioning : Thermal treatment (at 150°C for 1hr) Note1			
	Conditions for	1 cycle			
	Step	temperature (°C)	Time(min.)		
Test Methods and	1	Minimum operating temperature	30 ± 3 min.		
Remarks	2	Normal temperature	2 to 3min.		
	3	Maximum operating temperature	30 ± 3 min.		
	4	Normal temperature	2 to 3min.		
	Number of cycl	es : 5 times			
	Recovery : 24 \pm 2hrs under the standard condition Note3				

14. Humidity(Stea	dy state)	
	Temperature Compensati	ng(High Frequency type)
	Appearance	: No abnormality
	Capacitance change	: C※≦10pF :±0.5pF C※>10pF :±5% ※Normal capacitance
	Insulation resistance	: 1000M Ωmin
Specified Value	High permittivity	
	Appearance	: No abnormality
	Capacitance change	: Within $\pm 15\%$
	Dissipation factor	: 7%max(HMK,HMJ), 5%max(QMK,QMJ, SMK,SMJ).
	Insulation resistance	: 25M $\Omega\mu$ or 1000M Ω , whichever is smaller.
	Preconditioning	: Thermal treatment(at 150°C for 1hr) Note1 (Only High permittivity)
Test Methods and	Temperature	: 40±2°C
	Humidity	: 90 to 95%RH
Remarks	Duration	: 500 +24/-0 hrs
	Recovery	: 24 \pm 2hrs under the standard condition Note3

15. Humidity Loadir	ng	
	Temperature Compensating	(High Frequency type)
	Appearance	: No abnormality
	Capacitance change	:C‰≦2.0pF:±0.4pF 2.0pF <c≦10pf: c‰="" ±0.75pf="">10pF:±7.5%</c≦10pf:>
		: XNormal capacitance
	Insulation resistance	: 500M Ωmin
Specified Value		
	High permittivity	
	Appearance	: No abnormality
	Capacitance change	: Within±15%
	Dissipation factor	:7%max(HMK,HMJ), 5%max(QMK,QMJ, SMK,SMJ).
	Insulation resistance	: 10M $\Omega\mu$ F or 500M Ω whichever is smaller.
	According to JIS 5102 claus	se 9.9.
	Preconditioning	: Voltage treatment Note2 (Only High permittivity)
	Temperature	:40±2°C
Test Methods and	Humidity	: 90 to 95%RH
Remarks	Applied voltage	: Rated voltage
	Charge/discharge current	: 50mA max.
	Duration	: 500 +24/-0 hrs
	Recovery	: 24 \pm 2hrs under the standard condition Note3

16. High Temperatu	ire Loading					
	Temperature Compensating(High Frequency type)					
	Appearance	: No abnormality				
	Capacitance change	: C‰≦10pF :±0.3pF C‰>10pF :±3%				
	Insulation resistance	:1000M Ωmin				
Specified Value	High permittivity					
	Appearance	: No abnormality				
	Capacitance change	: Within±15%				
	Dissipation factor	: 7%max(HMK,HMJ), 5%max(QMK,QMJ, SMK,SMJ).				
	Insulation resistance	: 50M $\Omega\mu$ F or 1000M Ω whichever is smaller.				
	According to JIS 5102 clause 9.10.					
	Preconditioning : Voltage treatment Note2 (Only High permittivity)					
Test Methods and	Temperature	: Maximum operating temperature				
Remarks	Applied voltage	: Rated voltage × 2(HMK,HMJ,QVS) Rated voltage × 1.5 (QMK,QMJ) Rated voltage × 1.2 (SMK,SMJ)				
Remarks	Charge/discharge current	: 50mA max.				
	Duration	: 1000 +24/-0 hrs				
	Recovery	: 24 \pm 2hrs under the standard condition Note3				
Note1 Thermal treatme		d after test sample is heat-treated at 150 \pm 0 $/-$ 10 $^\circ$ C for an hour and kept at room temperature				
	for 24 ± 2 hours.					
Note2 Voltage treatme		ed after test sample is voltage-treated for an hour at both the temperature and voltage specified in				
Note3 Standard condit		l kept at room temperature for 24±2hours. elative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa				
		concerning measurement results, in order to provide correlation data, the test shall be conducted				
	under the following conditio					
	Temperature: $20\pm2^{\circ}$ C, Rela	ative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa				
	Unless otherwise specified,	all the tests are conducted under the "standard condition".				

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.

For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

PRECAUTIONS

1. Circuit Design	
	♦Verification of operating environment, electrical rating and performance
	1. A malfunction of equipment in fields such as medical, aerospace, nuclear control, etc. may cause serious harm to human life or have severe social ramifications.
	Therefore, any capacitors to be used in such equipment may require higher safety and reliability, and shall be clearly differentiated from them used in general purpose applications.
Precautions	♦ Operating Voltage (Verification of Rated voltage)
	1. The operating voltage for capacitors must always be their rated voltage or less.
	If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages shall be the rated voltage or less.
	For a circuit where an AC or a pulse voltage may be used, the sum of their peak voltages shall also be the rated voltage or less.
	2. Even if an applied voltage is the rated voltage or less reliability of capacitors may be deteriorated in case that either a high frequency AC voltage or a pulse voltage having rapid rise time is used in a circuit.

2. PCB Design										
Precautions	 Pattern configurations (Design of Land-patterns) 1. When capacitors are mounted on PCBs, the amount of solder used (size of fillet) can directly affect the capacitor performance. Therefore, the following items must be carefully considered in the design of land patterns: (1) Excessive solder applied can cause mechanical stresses which lead to chip breaking or cracking. Therefore, please consider appropriate land-patterns for proper amount of solder. (2) When more than one component are jointly soldered onto the same land, each component's soldering point shall be separated by solder-resist. Pattern configurations (Capacitor layout on PCBs) After capacitors are mounted on boards, they can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering of the boards, etc.). For this reason, land pattern configurations and positions of capacitors shall be carefully considered to minimize stresses. 									
	The follow (1)Recor	ing d mmei ayer im) -solo	nded land dimer Ceramic Capac	les show som sions for typic	e examples of r cal chip capacit	ors	and patterns to p		ve solder amour	or PCBs
	Reflo	w-so	Idering						I L I	
	Тур	е	042	063	105	107	212	316	325	432
	Size	L	0.4	0.6	1.0	1.6	2.0	3.2	3.2	4.5
Technical	5126	W	0.2	0.3	0.5	0.8	1.25	1.6	2.5	3.2
considerations	A		0.15 to 0.25	0.20 to 0.30	0.45 to 0.55	0.8 to 1.0	0.8 to 1.2	1.8 to 2.5	1.8 to 2.5	2.5 to 3.5
	В		0.15 to 0.20	0.20 to 0.30	0.40 to 0.50	0.6 to 0.8	0.8 to 1.2	1.0 to 1.5	1.0 to 1.5	1.5 to 1.8
	С		0.15 to 0.30	0.25 to 0.40	0.45 to 0.55	0.6 to 0.8	0.9 to 1.6	1.2 to 2.0	1.8 to 3.2	2.3 to 3.5
		C:R nm) De L W	mmended land s ecommended la <u>105</u> 0.52 1.0 0.18 to 0.22 0.2 to 0.25 0.9 to 1.1		for reflow-sold 212 1.25 2.0 1.3 0.5 to 4 0.4 to	dering 5 0.7 0.5	vance of the size	of the product		

3. Mounting	
Precautions	 Adjustment of mounting machine When capacitors are mounted on PCB, excessive impact load shall not be imposed on them. Maintenance and inspection of mounting machines shall be conducted periodically. Selection of Adhesives When chips are attached on PCBs with adhesives prior to soldering, it may cause capacitor characteristics degradation unless the following factors are appropriately checked : size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, please contact us for further information.
Technical considerations	 Adjustment of mounting machine 1. When the bottom dead center of a pick-up nozzle is too low, excessive force is imposed on capacitors and causes damages. To avoid this, the following points shall be considerable. (1) The bottom dead center of the pick-up nozzle shall be adjusted to the surface level of PCB without the board deflection. (2) The pressure of nozzle shall be adjusted between 1 and 3 N static loads. (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins shall be used on the other side of the PCB. The following diagrams show some typical examples of good and bad pick-up nozzle placement:

l. Soldering	
Precautions	 Selection of Flux Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use; (1) Flux used shall be less than or equal to 0.1 wt% (in Cl equivalent) of halogenated content. Flux having a strong acidity content shan not be applied. (2) When shall capacitors are soldered on boards, the amount of flux applied shall be controlled at the optimum level. (3) When water-soluble flux is used, special care shall be taken to properly clean the boards.
	◆Soldering
	Temperature, time, amount of solder, etc. shall be set in accordance with their recommended conditions. Sn-Zn solder paste can adversely affect MLCC reliability.
	Please contact us prior to usage of Sn-Zn solder.
Technical considerations	 Selection of Flux 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate flux, or highly acidic flux is used, it may lead corrosion of terminal electrodes or degradation of insulation resistance on the surfaces of the capacitors. 1-2. Flux is used to increase solderability in wave soldering. However if too much flux is applied, a large amount of flux gas may be emitted and may adversely affect the solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system 1-3. Since the residue of water-soluble flux is easily dissolved in moisture in the air, the residues on the surfaces of capacitors in high humidity conditions may cause a degradation of insulation resistance and reliability of the capacitors. Therefore, the cleaning methods and the capability of the machines used shall also be considered carefully when water-soluble flux is used.
	◆ Soldering
	 Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering must be conducted with great care so as to prevent malfunction of the components due to excessive therm shock.
	 Preheating : Capacitors shall be preheated sufficiently, and the temperature difference between the capacitors and solder shall be with 100 to 130°C.
	\cdot Cooling : The temperature difference between the capacitors and cleaning process shall not be greater than 100°C.

5. Cleaning	
Precautions	 Cleaning conditions When PCBs are cleaned after capacitors mounting, please select the appropriate cleaning solution in accordance with the intended use of the cleaning. (e.g. to remove soldering flux or other materials from the production process.) Cleaning condition shall be determined after it is verified by using actual cleaning machine that the cleaning process does not affect capacitor's characteristics.
Technical considerations	 The use of inappropriate cleaning solutions can cause foreign substances such as flux residue to adhere to capacitors or deteriorate their outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). Inappropriate cleaning conditions (insufficient or excessive cleaning) may adversely affect the performance of the capacitors. In the case of ultrasonic cleaning, too much power output can cause excessive vibration of PCBs which may lead to the cracking of capacitors or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions shall be carefully checked; Ultrasonic output : 20 W/L or less Ultrasonic frequency : 40 kHz or less Ultrasonic washing period : 5 min. or less

hq_c_mlcc_prec_e-E06R01

	1. With some type of resins, decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period of while left under normal storage conditions resulting in the deterioration of the capacitor's performance.
Precautions	 When a resin's hardening temperature is higher than capacitor's operating temperature, the stresses generated by the excessive hea may lead to damage or destruction of capacitors.
	The use of such resins, molding materials etc. is not recommended.

	 Splitting of PCB When PCBs are split after components mounting, care shall be taken so as not to give any stresses of deflection or twisting to the board. Board separation shall not be done manually, but by using the appropriate devices.
Precautions	◆Mechanical considerations
	Be careful not to subject capacitors to excessive mechanical shocks.
	 (1) If ceramic capacitors are dropped onto a floor or a hard surface, they shall not be used. (2) Please be careful that the mounted components do not come in contact with or bump against other boards or components.

	♦Storage					
	1. To maintain the solderability of terminal electrodes and to keep packaging materials in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible.					
	Recommended conditions					
	Ambient temperature : Below 30°C					
Precautions	Humidity : Below 70% RH					
	The ambient temperature must be kept below 40°C. Even under ideal storage conditions, solderability of capacitor is deteriorated as time passes, so capacitors shall be used within 6 months from the time of delivery.					
	•Ceramic chip capacitors shall be kept where no chlorine or sulfur exists in the air.					
	2. The capacitance values of high dielectric constant capacitors will gradually decrease with the passage of time, so care shall be taken to design circuits. Even if capacitance value decreases as time passes, it will get back to the initial value by a heat treatment a 150°C for 1hour.					
Technical considerations	If capacitors are stored in a high temperature and humidity environment, it might rapidly cause poor solderability due to terminal oxidation an quality loss of taping/packaging materials. For this reason, capacitors shall be used within 6 months from the time of delivery. If exceeding th above period, please check solderability before using the capacitors.					

Please check the guide regarding precautions for deflection test, soldering by spot heat, and so on.

RELIABILITY DATA

1. Operating Tempe	rature Range
Specified Value	$X7R(-55^{\circ}C \text{ to } +125^{\circ}C)$
Test Methods and Remarks	Continuous use is available in this range. (reference temperature : 25°C)

2.Highest Operating temperature Range			
Specified Value	$(7R(-55^{\circ}C \text{ to } +125^{\circ}C))$		
Test Methods and Remarks	Maximum ambient temperature at which capacitors can be continuously used with rated voltage applied.		

3. Rated Voltage	3. Rated Voltage		
Specified Value	Please refer to the page of the "PART NUMBERS".		
Test Methods and	Continuous maximum applied voltage. If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages should be lower than		
Remarks	the rated voltage of the capacitor.		

4. Shape and Dimensions			
Specified Value	Specified Value Please refer to the page of the "EXTERNAL DIMENSIONS".		

5. Heat Treatment (Class II)		
Test Methods and	Initial value shall be measured after test sample is heat-treated at $150+0/-10^{\circ}$ C for an hour and kept at room temperature for 24 \pm	
Remarks	2 hours.	

6. Voltage Treatment (Class II)				
Test Methods and	Initial value shall be measured after test sample is voltage-treated for an hour at temperature and voltage which are specified as test			
Remarks	conditions, and kept at room temperature for 24 ± 2 hours.			

7. Dielectric Withstanding Voltage (between terminals)			
Specified Value	No abnormality.		
Test Methods and Remarks	Applied voltage: Rated voltage × 2.5Duration: 1 to 5 seconds.Charging and discharging current shall be 50mA max.		

8. Insulation Resista	8. Insulation Resistance		
Specified Value	Larger than whichever smaller of 500 M Ω • μ F or 10 ⁴ M Ω		
Test Methods and Remarks	Applied voltage Duration Charging and dischargir	: Rated voltage : 60±5 seconds. g current shall be 50mA max.	

9. Capacitance and Tolerance			
Specified Value	Please refer to the page of the "PART NUMBERS".		
Test Methods and Remarks	Measurement frequency: $1 \text{kHz} \pm 10\% (C \le 10 \mu\text{F})$ Measurement voltage: $1 \pm 0.2 \text{Vrms} (C \le 10 \mu\text{F})$ $0.5 \pm 0.1 V (6.3 \text{V rated voltage})$ Heat treatment specified in No.5 of the specification shall be conducted prior to measurement.		
10. Q or Dissipation	factor (tan Ø		
Specified Value	Please refer to the page of the "PART NUMBERS".		
Test Methods and Remarks	Measurement frequency Measurement voltage Heat treatment specified in No.	 : 1kHz±10%(C≦10 μF) : 1±0.2Vrms(C≤10 μF) 0.5±0.1V(6.3V rated voltage) 5 of the specification shall be conducted prior to measurement. NO DC bias is applied. 	

11. Temperature Characteristic (without DC bias)			
Specified Value	X7R(-55°C to +125°C):±15%		
Test Methods and Remarks	Heat trea	g to EIA RS-198-D (1991) tment specified in No.5 of the specification shall b f the maximum capacitance deviation in step 1 to Temperature (°C) +25 Minimum operating temperature +25 Maximum operating temperature +25	

12. Adhesive Force of Terminal Electrodes

 Specified Value
 Appearance : Terminal electrodes shall be no exfoliation or a sign of exfoliation.

 Solder lands refer to fig.1.
 Solder lands refer to fig.1.

 Applying force
 5N

 Introduction
 30±5 seconds.

 Board
 Glass epoxy-resin substrate

 Thickness
 1.6mm

Test Methods an Remarks

Hooked jig Board

Case size				
Dimension	1608	2012	3216	3225
а	1.0	1.2	2.2	2.2
b	3.0	4.0	5.0	5.0
С	1.2	1.65	2.0	2.9

13. Vibration				
Specified Value	Capacitance change : I Dissipation factor : I	: No abnormality : Initial value shall be satisfied. : Initial value shall be satisfied. : Initial value shall be satisfied.		
Test Methods and Remarks	Heat treatment specified in No.5 of the specification shall be conducted prior to test. Measurement shall be conducted after test sample heat treated as specified in No.5. Solder lands refer to figure 1. Direction of the vibration test : X, Y, Z each of 3 orientations for 2 hours respectively (total 6 hours) Vibrationfrequency : 10 to 55 to 10Hz (1 minutes each) Total amplitude : 1.5 mm Measurement after the test shall be made after test sample is kept at room temperature for 24 ±2 hours.			

14. Resistance to Soldering Heat					
	Appearance	: No abnormality			
	Capacitance change	: ≦±7.5%			
Specified Value	Dissipation factor	: Initial value shall be satisfied.			
	Insulation resistance	: Initial value shall be satisfied.			
	Dielectric withstanding vol	age (between terminals) : No abnormality			
	Heat treatment specified in No.5 of the specification shall be conducted prior to test.				
	Immerse test sample in an	solder solution (Sn-3Ag-0.5Cu).			
	Soldering temperature	: 270℃±5℃			
Test Methods and	Duration	$: 3 \pm 0.5$ seconds			
Remarks	Soaking position	: Test sample is soaked until the termnal electrode is covered in solder solution.			
	Preheating condition	: 3216 size or smaller size: 120 to 150° C for 1 minute,			
		3225 size:100 to 120° C for 1 minute, 170 to 200° C for 1 minute.			
	Measurement after the tes	t shall be made after test sample is kept at room temperature for 24 ± 2 hours.			

15. Solderability						
Specified Value	More than 95% of terminal	Nore than 95% of terminal electrode shall be covered with fresh solder.				
Test Methods and Remarks		n No.5 of the specification shall be conducted prior to test. solder solution(Sn-3Ag-0.5Cu). : 245℃±5℃ : 4±1 seconds : Test sample is immersed until the terminal electrode is covered in solder solution.				

16. Thermal shock									
Specified Value	Dissipati Insulation	nce nce change on factor n resistance c withstanding voltage	 : No abnormality : ≦±7.5% : Initial value shall be satisfied. : Initial value shall be satisfied. (between terminals) : No abnormality 						
	Measure	•	r test sample is h ture(°C)		l as specif Time	fied in No.	٦	Fransfer time	1
	2	Minimum usag Maximum usag			15 15		hin 20 seconds hin 20 seconds	_	
Test Methods and Remarks		les:100 times. ment after the test shall be m	nade after test sa	mple is kep	ot at room	temperat	ure for 24	±2 hours.	-
		→ + * _ 			Case	size			
			Dimension	1608	2012	3216	3225		
			а	0.6	0.8	2.0	2.0		
	—	<mark></mark> ↑a	b	2.2	3.0	4.4	4.4		
	□ Fig.2		С	0.9	1.3	1.7	2.6		

17. Humidity Loadin	g	
Specified Value Note1	Appearance Capacitance change Dissipation factor Insulation resistance	: No abnormality : \pm 12.5% : 5.0%max. : Larger than whichever smaller of 25M Ω • μ F or 500M Ω
Test Methods and Remarks		: 85°C/85%RH. : 1000 +48/-0 hours. : Applied rated voltage. :ified in No.6 of the specification shall be conducted prior to test. test shall be made after test sample is kept at room temperature for 24 ±2 hours.

18. High Temperatu	re Loading				
Specified Value	Appearance Capacitance change	: No abnormality : $\leq \pm 12.5\%$			
Note1	Dissipation factor	: 5.0%max.			
	Insulation resistance	: Larger than whichever smaller of 25M Ω • μ F or 500M Ω			
	Voltage treatment specified in No.6 of the specification shall be conducted prior to test. Test sample shall be put in thermostatic oven with maximum temperature.				
Test Methods and	Applied voltage	: Rated voltage x 2			
Remarks	Duration	: 1000 +48/-0 hours.			
	Charging and discharging current shall be 50mA or less.				
	Measurement after the	test shall be made after test sample is kept at room temperature for 24 ± 2 hours.			

19. Resistance to F	lexure of substrate							
Specified Value	Appearance Capacitance change Dissipation factor Insulation resistance	: No abnormal : ≦±12.5% : 5.0%max. : Initial value s	ity shall be satisfied.					
	Warp: 1mmTesting board: Grass epoxy - resin substrateThickness: 1.6mmTest board and solder lands: Refer to fig. 3.							
-				Case size			_	
Test Methods and		0	Dimension	1608	2012	3216	3225	R5
Remarks			а	0.6	0.8	2.0	2.0	Board Warp
			b	2.2	3.0	4.4	4.4	
			с	0.9	1.3	1.7	2.6	<u>45±2</u> 45±2
	100						Fig.4	
	Fig.3			Меа	asuremen	t shall be	made with	h board in the bent position.(fig.4)

20. High Temperature Exposure				
Specified Value Note1	Appearance Capacitance change Dissipation factor Insulation resistance	: No abnormality : $\leq \pm$ 12.5% : 5.0%max. : Larger than whichever smaller of 500M Ω • μ F or 10000M Ω		
Test Methods and Remarks	Heat treatment specified in No.5 of the specification shall be conducted prior to test. Test sample shall be put in thermostatic oven with maximum temperature. Duration : $1000 + 48/-0$ hours. Initial value shall be measured after test sample is heat—treated specified No.5. Measurement after the test shall be made after test sample is kept at room temperature for 24 ±2 hours.			

21. Temperature Cy	cling						
	Appearance	: No abnormality					
Specified Value	Capacitance	e change : $\leq \pm 7.5\%$: ≦±7.5%				
Note1	Dissipation	factor : Initial value shall be satis	: Initial value shall be satisfied				
	Insulation re	esistance : Initial value shall be satis	fied				
	Measureme	nent specified in No.5 of the specification shall be nt shall be conducted after test sample is heat th f the one cycle					
	Step	Temperature (°C)	Time(min.)				
Test Methods and	1	Minimum usage temperature	30±3				
Remarks	2	+25	2 to 3				
Remarks	3	Maximum usage temperature	30±3				
	4	+25	2 to 3				
	Test cycles: 200 times						
	Solder land	s refer to fig. 2.					
	Measureme	nt after the test shall be made after test sample	is kept at room temperature	; for 24 \pm 2 hours.			

Precautions on the use of High Reliability Application Multilayer Ceramic Capacitors

PRECAUTIONS

1.Circuit Design	
Precautions	 Verification of operating environment, electrical rating and performance A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any capacitors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. Operating Voltage (Verification of Rated voltage) The operating voltage for capacitors must always be lower than their rated values. If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages should be lower than the rated value of the capacitor chosen. For a circuit where both an AC and a pulse voltage may be present, the sum of their peak voltages should also be lower than the capacitor's rated voltage. Even if the applied voltage is lower than the rated value, the reliability of capacitors might be reduced if either a high frequency AC voltage or a pulse voltage having rapid rise time is present in the circuit.

2. PCB Design	
Precautions	 Pattern configurations (Design of Land-patterns) 1. When capacitors are mounted on a PCB, the amount of solder used (size of fillet) can directly affect capacitor performance. Therefore, the following items must be carefully considered in the design of solder land patterns: (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist. Pattern configurations (Capacitor layout on panelized [breakaway] PC boards) After capacitors have been mounted on the boards, chips can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD capacitors should be carefully performed to minimize stress.
Technical considerations	 ◆Pattern configurations (Design of Land-patterns) 1. The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amounts. (larger fillets which extend above the component end terminations) Examples of improper pattern designs are also show. (1) Recommended land dimensions for a typical chip capacitor land patterns for PCBs Land pattern Chip capacitor Chip capacitor Recommended land dimensions for reflow-soldering (unit: mm) Type 107 0121 216 322 316 325 32. Recommended land 0.8×1.2 1.8×2.5 1.8×2.5 3. A 0.8×1.0 0.8×1.2 1.8×2.5 1.8×2.5 3. Excess solder can affect the ability of chips to withstand mechanical stresses. Therefore, please take proper precautions when designing land-patterns.

hq_c_mlcc_hra_prec_e-E06R01

3.Soldering	1
Precautions	 Selection of Flux Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use;
Technical considerations	 Selection of Flux 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the capacitors. 1-2. Flux is used to increase solderability. To minimize the amount of flux applied, it are commended to use a flux-bubbling system. 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of capacitors in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capacitity of the machines used should also be considered carefully when selecting water-soluble flux. Soldering

