STRATUM 3E High Stability Oven Stabilized Oscillator OH100 Series

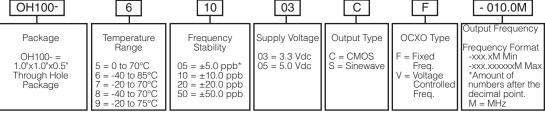
ocxo

2111 Comprehensive Drive
Aurora, Illinois 60505
Phone: 630-851-4722
Fax: 630-851-5040
www.conwin.com

Description

Connor-Winfield's high stability OH100 series are exceptionally precise frequency standards, excellent for use in cellular base stations, test equipment, Synchronous Ethernet, VSAT and Stratum 3E applications

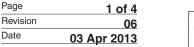
These unique OCXOs and OCVCXOs provide temperature stabilities in the range of ±5 ppb to ±50 ppb, over the commercial, extended commercial or the industrial temperature range. Power requirements are 1.1W over the commercial temperature range and 1.5W over the industrial temperature range after warm-up. Additionally, excellent aging is achieved through the use of overtone SC cut crystals.


The OH100 series is available with CMOS logic or Sinewave output along with Electronic Frequency Tuning. These oscillators provide outstanding phase noise that varies depending on frequency. Allan Variance specifications are rated for primary reference standards. Warm up times are on the order of 5 minutes to 0.10 ppm of final frequency.

Features

- Frequency Range: 5 to 40 MHz
- OCXO Fixed Frequency
- OCVCXO Voltage Controlled Frequency
- 3.3 Vdc or 5.0 Vdc Operation
- Available Frequency Stabilities:
 ±5.0 ppb, ±10.0 ppb, ±20 ppb or ±50 ppb
- Available Temperature Ranges:
 0 to 70°C, -20 to 70°C, -20 to 75°C, -40 to 70°C or -40 to 85°C
- Low Phase Noise / Phase Jitter
- Output: CMOS Logic or Sinewave
- Package: 1.0" x 1.0" x 0.500"
- RoHS Compliant / Lead Free

Ordering Information


* ±5.0 ppb stability models are only available from 0 to 70°C.

Example Part Number:

 $OH100-61003CF-010.0M = 1.0" \times 1.0" \times 0.445"$ package, -40 to 85°C temperature range, ± 10.0 ppb frequency stability, 3.3 Vdc supply voltage, CMOS square wave output, fixed output frequency OCXO, 10.0 MHz output frequency.

OH100-52005CV-010.0M = 1.0" x 1.0" x 0.445" package, 0 to 70°C temperature range, ±20.0 ppb frequency stability, 5.0 Vdc supply voltage, CMOS square wave output, voltage controlled output frequency, OCVCXO, 10.0 MHz output frequency.

 $OH100-71005SV-010.0M = 1.0" \times 1.0" \times 0.445"$ package, -20 to $70^{\circ}C$ temperature range, ± 10.0 ppb frequency stability, 5.0 Vdc supply voltage, Sinewave output, voltage controlled output frequency, OCVCXO, 10.0 MHz output frequency.

Cx205

Bulletin

Attention: System Designers please review Application Note AN2093: System Design Information and Printed Circuit Board Layout Guidelines for OCXO Oscillators. @ www.conwin.com/technologies.html

Aurora, Illinois 60505

Phone: 630-851-4722 Fax: 630-851-5040

www.conwin.com

Absolute I	Maximum	Ratings
------------	---------	---------

Parameter	Minimum	Nominal	Maximum	Units	Notes
Storage Temperature	-55	-	125	°C	
Supply Voltage - 3.3 Vdc (Vcc)	-0.5	-	4.5	Vdc	
Supply Voltage - 5.0 Vdc (Vcc)	-0.5	-	7.0	Vdc	
Control Voltage (Vc)	-0.5	-	7.0	Vdc	

Operating Specifications

Parameter	Minimum	Nominal	Maximum	Units	Notes
Center Frequency: (Fo)	5	-	40	MHz	
Operating Temperature Range:					
Temperature Code 5	0	-	70	°C	
Temperature Code 6	-40	-	85	°C	
Temperature Code 7	-20	-	70	°C	
Temperature Code 8	-40	-	70	°C	
Temperature Code 9	-20	-	75	°C	
Frequency Calibration:	-0.1	-	0.1	ppm	@ 25°C
Frequency Stability vs. Change in Temperature					
Stability Code 05	-5.0	-	5.0	ppb	1, 2
Stability Code 10	-10.0	-	10.0	ppb	2
Stability Code 20	-20.0	-	20.0	ppb	2
Stability Code 50	-50.0	-	50.0	ppb	2
Frequency Stability vs. Load	-2.0	-	2.0	ppb	±5%
Frequency Stability vs. Voltage	-2.0	-	2.0	ppb	±5%
Aging: Daily:					
5 MHz to 20 MHz	-1.0	-	1.0	ppb/day	3
>20 MHz to 40 MHz	-2.0	_	2.0	ppb/day	3
Aging: First Year:			2.0	pps,aay	
5 MHz to 20 MHz	-50	_	50	ppb	
>20 MHz to 40 MHz	-100	_	100	ppb	
Lifetime Tolerance: (20 Years)				PPS	
5 MHz to 20 MHz-	-300	_	300	ppb	4
>20 MHz to 40 MHz	-500	_	500	ppb	4
Supply Voltage: (Vcc) (Note: Power supply turn		t be > 5 ms to 90		F F C	
Voltage Code 03	3.13	3.30	3.47	Vdc	5
Voltage Code 05	4.75	5.00	5.25	Vdc	5
Power Consumption: Turn-On					
0 to 70°C Models	_	_	3.00	W	6
-20 to 70°C Models	_	_	3.20	W	6
-20 to 75°C Models	-	-	3.30	W	6
-40 to 85°C Models	-	_	3.80	W	6
Power Consumption: Steady State @ 25°C					
0 to 70°C Models	-	_	1.10	W	6
-20 to 70°C Models	-	-	1.15	W	6
-20 to 75°C Models	-	-	1.20	W	6
-40 to 85°C Models	-	-	1.50	W	6
Phase Jitter: (BW: 10 Hz to Fo/2)					
Models Fo: 5 MHz to 20 MHz	-	-	1.0	ps RMS	
Models Fo: >20 MHz to 40 MHz	-	-	2.0	ps RMS	
Short Term Allan Deviation (1s)	_	1.0E-11	-	RMS	
Start-Up Time:	_	-	500	ms	
Warm Up Time @ 25°C:	-	-	5	minutes	7
lateau					•

Notes:

- 1. ±5.0 ppb stability models are only available from 0 to 70°C.
- 2. Referenced to the frequency measured @ 25°C.
- 3. At time of shipment after 48 hours of operation.
- 4. Inclusive of calibration, operating temperature, supply voltage change, load change and 20 years aging.
- 5. Minimum "Power On Time" after rail rises from 0 to within +/-5% of Vcc = 1 second. Vcc ramp rate must be <0.3 volts per millisecond.
- 6. Measured with Vcc = Nominal, in calm air.
- 7. Measured @ 25° C, within ± 100 ppb, referenced one hour after turn-on
- 8. To ensure proper operation of OCVCXO's the control voltage input must be biased the nominal control voltage. Failure to bias the Vc input will cause an unstable output condition.

Bulletin	Cx205
Page	2 of 4
Revision	06
Date	03 Apr 2013

Aurora, Illinois 60505 Phone: 630-851-4722

Fax: 630-851-5040 www.conwin.com

Phase Noise Characteristics

Typical Phase	Noise for	OH100-series	with (CMOS Output
---------------	-----------	--------------	--------	-------------

Parameter					Units	Notes
SSB Phase Noise	5 - 12 MHz	>12- 20 MHz	>20 - 30 MHz	>30 - 40 MHz		
@ 1Hz offset	-85	-80	-70	-65	dBc/Hz	
@ 10Hz offset	-115	-110	-100	-95	dBc/Hz	
@ 100Hz offset	-140	-135	-125	-120	dBc/Hz	
@ 1KHz offset	-145	-140	-140	-140	dBc/Hz	
@ 10KHz offset	-150	-150	-150	-150	dBc/Hz	
@ 100KHz offset	-150	-150	-150	-150	dBc/Hz	

OCVCXO Input Characteristics (OCXO Type Code V)

Parameter	Minimum	Nominal	Maximum	Units	Notes
Control Voltage Range:					
3.3 Vdc Models	0.30	1.65	3.00	V	Vcc = 3.3 Vdc
5.0 Vdc Models	0.50	2.50	4.50	V	Vcc = 5.0 Vdc
Frequency Pullability:	±0.4	-	-	ppm	8
Input Impedance	100K	-	-	Ohms	

CMOS Output Characteristics (Output Code C)

Parameter	Minimum	Nominal	Maximum	Units	Notes
Load	-	15	-	рF	
Output Voltage:					
3.3 Vdc Models High (Voh)	3.0	-	-	V	
Low (Vol)	-	-	0.4		
5.0 Vdc Models High (Voh)	4.7	-	-	V	
Low (Vol)	-	-	0.4		
Duty Cycle at 50% of Vcc	45	50	55	%	
Rise / Fall Time: 10% to 90%	-	-	6	ns	
Spurious Output	-	-	-80	dBc	

Sinewave Output Characteristics (Output Code S)

Parameter	Minimum	Nominal	Maximum	Units	Notes
Load	-	50	-	Ohms	
Output Power	+5.0	-	+10	dBm:	
Harmonics	-	-	-30	dBc	
Spurious	-	-	-80	dBc	

Package Characteristics

OH100 Package Hermetically sealed, resistive welded package with grounded case.

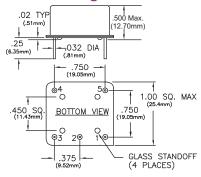
Environmental Characteristics

Shock	500 G's 1ms, Halfsine, 3 shocks per direction, per MIL-STD 202G, Method 213B Test Condition D.
Sinusoidal Vibration	0.06" D.A. or 10G's Peak, 10 to 500 Hz, per MIL-STD-202G, Method 204D, Test Condition A.
Random Vibration	5.35 G's rms. 20 to 2000 Hz per MIL-STD-202G, Method 214, Test Condition 1A, 15 minutes each axis.
Moisture	10 cycles, 95% RH, Per MIL-STD-202G, Method 112.
Marking Permanency	Per MIL-STD-202G, Method 215J.
Attachment Method PCB	Through Hole Mounted
Resistance to Solder Heat	Per MIL-STD-202G, Method 210, Condition E.
Solder Process	RoHS compliant, lead free. See solder profile.

Bulletin	Cx205
Page	3 of 4
Revision	06
Date	03 Apr 2013

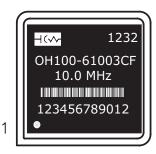
CONNOR WINFIELD

Aurora, Illinois 60505 Phone: 630-851-4722


Fax: 630-851-5040

Re-St		

Off Time	Re stabilization Time	
<1 Hour	<2 Hours *	
<6 Hour	<12 Hours *	
<24 Hour	<48 Hours *	
1 to 16 Days	48 Hours + 1/4 Off Time *	
>16 Days	<6 Days *	

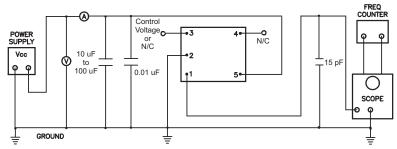

^{*} For a given off time, the time required to meet daily aging, short term stability requirements.

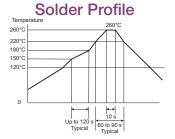
Package Outline

Dimensional Tolerance: ±.005 (.127mm)

Package Marking

Date Code (YYWW)


Model Number Output Frequency Serial # Barcode Serial Number


Keep Out Area: Under the OCXO is a keep out area, do not place any parts in this area.

Attention: System Designers please review Application Note AN2093: System Design Information and Printed Circuit Board Layout Guidelines for OCXO Oscillators. @ www.conwin.com/technologies.html

Test Circuit

Meets IPC/JEDEC J-STD-020C

Pin Connections

Pin Connection

- 1: Output
- 2: Ground (Case)
- 3: Control Voltage or N/C
- 4: N/C
- 5: Supply Voltage (Vcc)

CMOS Output Waveform

Revision 00,	New issue, 03/01/11.
Revision 01,	Updated power consumption. 07/27/11
Revision 02,	Added sinewave models. 03/22/12
Revision 03,	Updated marking information. 08/22/12
Revision 04,	Added +10 dB Max to sinewave output characteristics . 09/18/12
Revision 05,	Added application note AN2093 information. 12/07/12
Revision 06,	Added ±5ppb models. 04/03/13

Bulletin	Cx205
Page	4 of 4
Revision	06
Date	03 Apr 2013