DALLAS MINKIN

www.maxim-ic.com

GENERAL DESCRIPTION

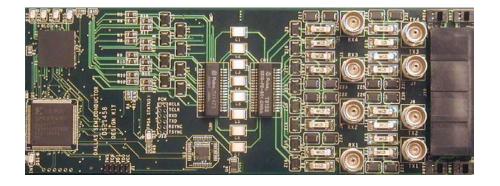
The DS21458DK is an easy-to-use evaluation board for the DS21458 quad T1/E1/J1 transceiver. The DS21458DK is intended to be used as a daughter card with the DK101 motherboard or the DK2000 motherboard. The DS21458DK comes complete with a DS21458 guad SCT, transformers, termination resistors, configuration switches, line-protection circuitry, network connectors, and motherboard connectors. The DK101/DK2000 motherboard and Dallas' ChipView software give point-and-click access to configuration and status registers from a Windows®-based PC. On-board LEDs indicate receive loss-of-signal and interrupt status. An onboard FPGA contains mux logic to connect framer ports to one another or to the DK2000 in a variety of configurations.

Each DS21458DK is shipped with a free DK101 motherboard. For complex applications, the DK2000 high-performance demo kit motherboard can be purchased separately.

Windows is a registered trademark of Microsoft Corp.

DESIGN KIT CONTENTS

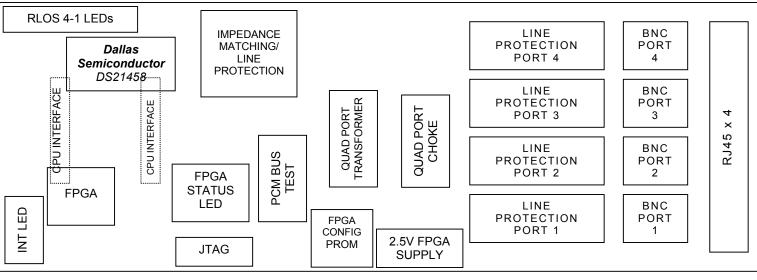
DS21458DK Design Kit Daughter Card DK101 Low-Cost Motherboard CD ROM ChipView Software DS21458DK Data Sheet DK101 Data Sheet DS21458 Data Sheet


DS21458DK Quad T1/E1/J1 Transceiver Design Kit Daughter Card

FEATURES

- Demonstrates Key Functions of DS21458 Quad T1/E1/J1 Transceiver
- Includes DS21458 Quad LIU, Transformers, BNC and RJ45 Network Connectors, and Termination Passives
- Compatible with DK101 and DK2000 Demo Kit Motherboards
- DK101/DK2000 and ChipView Software Provide Point-and-Click Access to the DS21458 Register Set
- All Equipment-Side Framer Pins are Easily Accessible for External Data Source/Sink
- Memory-Mapped FPGA Provides Flexible Clock/Data/Sync Connections Among Framer Ports and DK2000 Motherboard
- LEDs for Loss-of-Signal and Interrupt Status
- Easy-to-Read Silk Screen Labels Identify the Signals Associated with all Connectors, Jumpers, and LEDs
- Network Interface Protection for Overvoltage and Overcurrent Events

ORDERING INFORMATION


PART	DESCRIPTION				
DS21458DK	DS21458 Design Kit Daughter Card				
D521458DK	(with included DK101 Motherboard)				

DESIGNATION QTY DESCRIPTION SUPPLIER PART C1-C8 8 0.22µF, 50V ceramic capacitors Panasonic PCF1152CT-ND C9, C10, C12, C18, C22-C33, 23 0.1µF 10%, 16V ceramic capacitors (0603) Phycomp 06032R104K7B20D C35, C38-C43 C11, C13-C15 4 0.1µF 10%, 25V ceramic capacitors (1206) Panasonic ECJ-3VB1E104K C16, C17, C19-C21, C34, C36, 9 1µF 10%, 16V ceramic capacitors (1206) Panasonic ECJ-3YB1C105K C45, C46 C37, C44 2 10µF 20%, 10V ceramic capacitors (1206) Panasonic ECJ-3YB1A106M Pulse CH1 1 T8132 Quad-port choke Engineering DS1 1 LED, red, SMD Panasonic LN1251C LED, green, SMD Panasonic DS2-DS6 5 LN1351C F1-F16 1.25A, 250V fuses, SMT Teccor F1250T 16 J1 1 10-pin connectors, dual row, vertical Digi-Key S2012-05-ND J2-J9 8 5-pin BNC connectors, vertical Cambridge CP-BNCPC-004 8-pin, 4-port jack J10 1 Molex 43223-8140 Right-angle RJ45 J11, J12 2 50-pin sockets, SMD, dual row, vertical Samtec TFM-125-02-S-D-LC 12-pin connector, dual row, vertical S2012-06-ND J13 1 Digi-Key Not populated J14 1 1Mbit flash-based configuration memory Xilinx XCF01SV020C PRT1-PRT4 4 6-pin through-hole slide switches DPDT Tvco SSA22 R1, R2, R4, R26, 7 ERJ-6GEYJ103V 10kΩ 5%, 1/10W resistors (0805) Panasonic R39, R41, R45 R3, R27 2 1.0kΩ 5%, 1/10W resistors (0805) Panasonic ERJ-6GEYJ102V R5-R12, R14-17 Panasonic ERJ-8GEYJ0R00V 0Ω 5%, 1/8W resistors (1206) R21, R48 R13, R47 2 Not populated Panasonic Not populated R22-R25 51.1Ω 5%, 1/10W resistors (0805) 4 Panasonic ERJ-6GEY51R1V R29-R36 8 Panasonic ERJ-8ENF61R9V 61.9Ω 1%, 1/8W resistors (1206) R40, R42-R44, 6 330Ω 5%, 1/10W MF resistors (0805) Panasonic ERA-6GEY331V R46. R49 SMT 32-pin octal T1/E1 transformer, Pulse T1 1 TX1473 transmit/receive, 1:2 Engineering 2.5V FPGA Spartan (Xilinx) U1 Xilinx XC2S50-5TQ144C 1 144-pin TQFP 3.3V T1/E1/J1 guad transceiver Dallas U2 DS21458 1 0°C to +70°C, 256-pin BGA Semiconductor 1M PROM for FPGA U3 1 Xilinx Not populated 44-pin TQFP 8-pin μMAX, SO U4 1 Maxim MAX1792EUA25 2.5V or Adj 50A. 6V Sidactor Z1–Z8 8 Teccor P0080SAMC DO214 SMD 500A, 25V Sidactor 8 P0300SCMC Z9-Z16 Teccor DO214 SMD 500A, 170V Sidactor Z17-Z32 16 P1800SCMC Teccor DO214 SMD

COMPONENT LIST

BOARD FLOORPLAN

BASIC CONFIGURATION

This design kit relies upon several supporting files, which are available for downloading on our website at <u>www.maxim-ic.com/telecom</u>. See the DS21458DK QuickView data sheet for these files.

Hardware Configuration

Using the DK101 Processor Board:

- Connect the daughter card to the DK101 processor board.
- Supply 3.3V to the banana-plug receptacles marked GND and VCC_3.3V. (The external 5V connector is unused. Additionally, the TIM 5V supply headers are unused.)
- All processor board DIP switch settings should be in the ON position with exception of the flash programming switch, which should be OFF.
- From the Programs menu, launch the host application named ChipView.EXE. Run the ChipView application. If the default installation options were used, click the Start button on the Windows toolbar and select Programs → ChipView → ChipView.

Using the DK2000 Processor Board:

- Connect the daughter card to the DK2000 processor board.
- Connect J1 to the power supply that is delivered with the kit. Alternately, a PC power supply may be connected to connector J2.
- From the Programs menu, launch the host application named ChipView.EXE. Run the ChipView application. If the default installation options were used, click the Start button on the Windows toolbar and select Programs → ChipView → ChipView.

General

- Upon power-up, the RLOS LEDs (green) will not be lit, the INT LED (red) will not be lit, but the FPGA Status LED (green) will be lit.
- When operating in E1 mode, slide SW1–SW4 to E1 Mode (grounding the BNC shell). When operating in T1 mode, slide SW1–SW4 to T1 Mode.

Miscellaneous

- Clock frequencies and certain pin bias levels are provided by a register-mapped FPGA that is on the DS21458 daughter card.
- The definition file for this FPGA is named DS21458DC_FPGA.def. See <u>Table 2</u> for the FPGA Register Map definitions. A drop-down menu on the top of the screen allows for switching between definition files.
- All files referenced above are available for download as described in the *Basic Configuration* section.

Quick Setup (Demo Mode)

- The PC will load ChipView offering a choice among DEMO MODE, REGISTER VIEW, and TERMINAL MODE. Select Demo Mode.
- The program will request a configuration file. Select among the displayed files, which are DS2155_E1_DSNCOM_DRVR.cfg or DS2155_T1_DSNCOM_DRVR.cfg.
- The Demo Mode screen will appear. Upon external loopback the RLOS indicators will turn green.
- Note: Demo Mode interacts with the device driver, which resides in the DK101/DK2000 firmware. The current implementation of this driver is for one device. As such, the demo mode will only interact with Port 1. With minor changes, the device driver is extendible to N devices.

Quick Setup (Register View)

- The PC will load ChipView offering a choice among DEMO MODE, REGISTER VIEW, and TERMINAL MODE. Select Register View.
- The program will request a definition file. Select DS21458DC_FPGA.def through the Links section. This will also load DS21458DC.def.
- The Register View Screen will appear, showing the register names, acronyms, and values for the DS21458.
- Predefined Register settings for several functions are available as initialization files.
 - INI files are loaded by selecting the menu <u>File \rightarrow Reg Ini File \rightarrow Load Ini File.</u>
 - Load the INI file DS21458_T1_BERT_ESF.ini.
 - After loading the INI file, the following may be observed:
 - 0 The RLOS LEDs turns green upon external loopback.
 - All four ports of the DS21458 begin transmitting a Daly pattern. When external loopback is applied, the BERT bit count registers BBC1 to BBC3 and BEC1 to BEC3 may be updated by clearing and setting BC1.LC and clicking the 'Read All' button.

ADDRESS MAP

DK101 daughter card address space begins at 0x81000000

DK2000 daughter card address space begins at:

0x30000000 for slot 0 0x40000000 for slot 1 0x50000000 for slot 2 0x60000000 for slot 3

All offsets given below are relative to the beginning of the daughter card address space (shown above).

OFFSET	DEVICE	DESCRIPTION
0X0000 to 0X0015	FPGA	Board identification and clock/signal routing
0X1000 to 0X10ff	T1/E1/J1 Transceiver #1	DS21458 T1/E1/J1 transceiver, port 1
0X1100 to 0X11ff	T1/E1/J1 Transceiver #2	DS21458 T1/E1/J1 transceiver, port 2
0X1200 to 0X12ff	T1/E1/J1 Transceiver #3	DS21458 T1/E1/J1 transceiver, port 3
0X1300 to 0X13ff	T1/E1/J1 Transceiver #4	DS21458 T1/E1/J1 transceiver, port 4

Table 1. Daughter Card Address Map

Registers in the FPGA can be easily modified using the ChipView host-based user-interface software along with the definition file named "DS21458DC_FPGA.def."

FPGA REGISTER MAP

OFFSET	NAME	TYPE	DESCRIPTION
0X0000	BID	Read Only	BOARD ID
0X0002	XBIDH	Read Only	HIGH NIBBLE EXTENDED BOARD ID
0X0003	XBIDM	Read Only	MIDDLE NIBBLE EXTENDED BOARD ID
0X0004	XBIDL	Read Only	LOW NIBBLE EXTENDED BOARD ID
0X0005	BREV	Read Only	BOARD FAB REVISION
0X0006	AREV	Read Only	BOARD ASSEMBLY REVISION
0X0007	PREV	Read Only	PLD REVISION
0X0011	MCSR	Control	DS21458 MCLK Pin Source
0X0012	TCSR	Control	DS21458 TCLK Pin Source
0X0013	SYSCLKT	Control	DS21458 TSYSCLK Pin Setting
0X0014	SYSCLKR	Control	DS21458 RSYSCLK Pin Setting
0X0015	SYNC1	Control	DS21458 TSYNC Source
0X0016	SYNC2	Control	DS21458 TSSYNC Source
0X0017	SYNC3	Control	DS21458 RSYNC Source
0X0018	TSERS	Control	TSER Source
0X0019	PRSER	Control	PCM RSER Source
0X001A	PSYNC	Control	PCM RSYNC/TSYNC Source
0X001B	PCLK	Control	PCM RCLK/TCLK Source

Table 2. FPGA Register Map

ID REGISTERS

BID: BOARD ID (Offset = 0X0000)

BID is read only with a value of 0xD.

XBIDH: HIGH NIBBLE EXTENDED BOARD ID (Offset = 0X0002)

XBIDH is read only with a value of 0x0.

XBIDM: MIDDLE NIBBLE EXTENDED BOARD ID (Offset = 0X0003)

XBIDM is read only with a value of 0x1.

XBIDL: LOW NIBBLE EXTENDED BOARD ID (Offset = 0X0004)

XBIDL is read only with a value of 0x6.

BREV: BOARD FAB REVISION (Offset = 0X0005)

BREV is read only and displays the current fab revision.

AREV: BOARD ASSEMBLY REVISION (Offset = 0X0006)

AREV is read only and displays the current assembly revision.

PREV: PLD REVISION (Offset = 0X0007)

PREV is read only and displays the current PLD firmware revision.

CONTROL REGISTERS

Register Name: MCSR Register Description: DS21458 MCLK Pin Source Register Offset: 0x0011

Bit #	7	6	5	4	3	2	1	0
Name	_	_	_	—	_	—	MSRCB	MSRCA
Default	—			—			1	1

Bit 0: DS21458 Port 1 and 3 MCLK Source (MSRCA)

0 = Connect MCLK 1 (controls port 1 and 3) to the 1.544MHz clock 1 = Connect MCLK 1 (controls port 1 and 3) to the 2.048MHz clock

Bit 1: DS21458 Port 2 and 4 MCLK Source (MSRCA)

0 = Connect MCLK 2 (controls port 2 and 4) to the 1.544MHz clock

1 = Connect MCLK 2 (controls port 2 and 4) to the 2.048MHz clock

Register Name: TCSR

Register Description: DS21458 TCLK Pin Source Register Offset: 0x0012

Bit #	7	6	5	4	3	2	1	0
Name	T4S1	T4S0	T3S1	T3S0	T2S1	T2S0	T1S1	T1S0
Default	0	0	0	0	0	0	0	0

Bit 0 to 1: DS21458 Port 1 TCLK Source (T1S0, T1S1)

The source for TCLK 1 is Defined as shown in Table 3.

Bit 2 to 3: DS21458 Port 2 TCLK Source (T2S0, T2S1)

The source for TCLK 2 is Defined as shown in Table 3.

Bit 4 to 5: DS21458 Port 3 TCLK Source (T3S0, T3S1)

The source for TCLK 3 is Defined as shown in Table 3.

Bit 6 to 7: DS21458 Port 4 TCLK Source (T4S0, T4S1)

The source for TCLK 3 is Defined as shown in Table 3.

Table 3. TCLKx Source Definition

TxS1, TxS0	TCLK CONNECTION
00	Drive TCLK _x with the 1.544MHz clock
01	Drive TCLK _x with the 2.048MHz clock
10	Drive TCLK _x with RCLK _x
11	N/A

Register Name: **SYSCLKT** Register Description: **DS21458 TSYSCLK Pin Setting** Register Offset: **0x0013**

Bit #	7	6	5	4	3	2	1	0
Name	R4S1	R4S0	R3S1	R3S0	R2S1	R2S0	R1S1	R1S0
Default	0	0	0	0	0	0	0	0

Bit 0 to 1: DS21458 Port 1 TSYSCLK Source (R1S0, R1S1)

The source for TSYSCLK 1 is Defined as shown in Table 4.

Bit 2 to 3: DS21458 Port 2 TSYSCLK Source (R2S0, R2S1)

The source for TSYSCLK 2 is Defined as shown in Table 4.

Bit 4 to 5: DS21458 Port 3 TSYSCLK Source (R3S0, R3S1)

The source for TSYSCLK 3 is Defined as shown in Table 4.

Bit 6 to 7: DS21458 Port 4 TSYSCLK Source (R4S0, R4S1)

The source for TSYSCLK 4 is Defined as shown in Table 4.

Table 4. TSYSCLKx Source Definition

RxS1, RxS0	TSYSCLK _x CONNECTION
00	Drive TSYSCLK _x with the 1.544MHz clock
01	Drive TSYSCLK _x with the 2.048MHz clock
10	Drive TSYSCLK _x with 8.192MHz clock
11	Drive TSYSCLK _x with DS21458 Port _x BPCLK

Register Name: **SYSCLKR** Register Description: **DS21458 RSYSCLK Pin Setting** Register Offset: **0x0014**

Bit #	7	6	5	4	3	2	1	0
Name	T4S1	T4S0	T3S1	T3S0	T2S1	T2S0	T1S1	T1S0
Default	0	0	0	0	0	0	0	0

Bit 0 to 1: DS21458 Port 1 RSYSCLK Source (T1S0, T1S1)

The source for RSYSCLK 1 is Defined as shown in Table 5.

Bit 2 to 3: DS21458 Port 2 RSYSCLK Source (T2S0, T2S1)

The source for RSYSCLK 2 is Defined as shown in Table 5.

Bit 4 to 5: DS21458 Port 3 RSYSCLK Source (T3S0, T3S1)

The source for RSYSCLK 3 is Defined as shown in Table 5.

Bit 6 to 7: DS21458 Port 4 RSYSCLK Source (T4S0, T4S1)

The source for RSYSCLK 4 is Defined as shown in Table 5.

Table 5. RSYSCLKx Source Definition

TxS1, TxS0	RSYSCLK _x CONNECTION
00	Drive RSYSCLK _x with the 1.544MHz clock
01	Drive RSYSCLK _x with the 2.048MHz clock
10	Drive RSYSCLK _x with 8.192MHz clock
11	Drive RSYSCLK _x with DS21458 Port _x BPCLK

Register Name: SYNC1 Register Description: DS21458 TSYNC Pin Source

Register Offset: 0x0015

Bit #	7	6	5	4	3	2	1	0
Name	_		_	_	T4SRC	T3SRC	T2SRC	T1SRC
Default	—	—		_	0	0	0	0

Bit 0: DS21458 Port 1 TSYNC Source (T1SRC)

0 = TSYNC 1 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSYNC 1 with RSYNC 1

Bit 1: DS21458 Port 2 TSYNC Source (T2SRC)

0 = TSYNC 2 is an output, tri-state corresponding FPGA driver pin (weak pulldown) 1 = Drive TSYNC 2 with RSYNC 2

Bit 2: DS21458 Port 3 TSYNC Source (T3SRC)

0 = TSYNC 3 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSYNC 3 with RSYNC 3

Bit 3: DS21458 Port 4 TSYNC Source (T4SRC)

0 = TSYNC 4 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSYNC 4 with RSYNC 4

Note: When driving TSYNCx with RSYNCx the corresponding DS21458 port should be configured such that TSYNCx is an input (IOCR1.1 = 0) and RSYNCx is an output (IOCR1.4 = 0).

Register Name: SYNC2 Register Description: DS21458 TSSYNC Pin Source Register Offset: 0x0016

Bit #	7	6	5	4	3	2	1	0
Name	_	—			T4SRC	T3SRC	T2SRC	T1SRC
Default	_	—			0	0	0	0

Bit 0: DS21458 Port 1 TSSYNC Source (T1SRC)

0 = Not using transmit-side elastic store, tri-state corresponding FPGA driver pin (weak pulldown) 1 = Drive TSSYNC 1 with RSYNC 1

Bit 1: DS21458 Port 2 TSSYNC Source (T2SRC)

0 = Not using transmit-side elastic store, tri-state corresponding FPGA driver pin (weak pulldown) 1 = Drive TSSYNC 2 with RSYNC 2

Bit 2: DS21458 Port 3 TSSYNC Source (T3SRC)

0 = Not using transmit-side elastic store, tri-state corresponding FPGA driver pin (weak pulldown) 1 = Drive TSSYNC 3 with RSYNC 3

Bit 3: DS21458 Port 4 TSSYNC Source (T4Source)

0 = Not using transmit-side elastic store, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive TSSYNC 4 with RSYNC 4

Note: When driving TSSYNCx with RSYNCx the corresponding DS21458 port should be configured such that RSYNCx is an output (IOCR1.4 = 0).

Register Name: SYNC3 Register Description: DS21458 RSYNC Pin Setting Register Offset: 0x0017

Bit #	7	6	5	4	3	2	1	0
Name	RSOR1	RSOR0	—	_	R4IO	R3IO	R2IO	R1IO
Default	0	0	_	_	0	0	0	0

Bit 0: DS21458 Port 1 RSYNC Setting (R1IO)

0 = RSYNC 1 is an output, tri-state corresponding FPGA driver pin (weak pulldown) 1 = Drive RSYNC 1 with RSYNC_x as shown in Table 6

Bit 1: DS21458 Port 2 RSYNC Setting (R2IO)

0 = RSYNC 2 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive RSYNC 2 with RSYNC_x as shown in Table 6

Bit 2: DS21458 Port 3 RSYNC Setting (R3IO)

0 = RSYNC 3 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive RSYNC 4 with RSYNC_x as shown in Table 6

Bit 3: DS21458 Port 4 RSYNC Setting (R4IO)

0 = RSYNC 4 is an output, tri-state corresponding FPGA driver pin (weak pulldown)

1 = Drive RSYNC 4 with RSYNC_x as shown in Table 6

Note: When driving RSYNCy with RSYNCx the corresponding DS21458 port should be configured such that RSYNCx is an output (IOCR1.4 = 0) and RSYNCy is an input (IOCR1.4 = 1).

Table 6. RSYNCx Function Definition

RSOR1, RSOR0	MASTER RSYNC DESIGNATION
00	RSYNC 1 is used to drive other RSYNC pins (providing $R_XIO = 1$)
01	RSYNC 2 is used to drive other RSYNC pins (providing $R_xIO = 1$)
10	RSYNC 3 is used to drive other RSYNC pins (providing $R_XIO = 1$)
11	RSYNC4 is used to drive other RSYNC pins (providing $R_XIO = 1$)

Register Name: **TSERS** Register Description: **DS21458 TSER Pin Source** Register Offset: **0x0018**

Bit #	7	6	5	4	3	2	1	0
Name	T4S1	T4S0	T3S1	T3S0	T2S1	T2S0	T1S1	T1S0
Default	0	0	0	0	0	0	0	0

Bit 0 to 1: DS21458 Port 1 TSER Source (T1S0, T1S1)

The source for TSER 1 is Defined as shown in Table 7.

Bit 2 to 3: DS21458 Port 2 TSER Source (T2S0, T2S1)

The source for TSER 2 is Defined as shown in Table 7.

Bit 4 to 5: DS21458 Port 3 TSER Source (T3S0, T3S1)

The source for TSER 3 is Defined as shown in Table 7.

Bit 6 to 7: DS21458 Port 4 TSER Source (T4S0, T4S1)

The source for TSER 4 is Defined as shown in Table 7.

Table 7. TSERx Source Definition

TxS1, TxS0	TSER _x CONNECTION			
00	Tri-state TSER _x (weak pulldown)			
01	Drive TSER _x with RSER _x			
10	Drive TSER _x with PCM_TXD bus (DK2000 only)			
11	N/A			

Register Name: **PRSER** Register Description: **PCM RSER Source** Register Offset: **0x0019**

Bit #	7	6	5	4	3	2	1	0
Name	_	_	_	_	R1EN	R1EN	R1EN	R1EN
Default	_	_	_	_	0	0	0	0

Bit 0 to 1: PCM RSER Source (R1EN)

0 = Do not drive DS21458 Port 1 RSER onto PCM_RSER

1 = Logically OR DS21458 Port 1 RSER with selected other RSER pins and drive onto PCM_RSER

Bit 2 to 3: DS21458 Port 2 TSER Source (T2S0, T2S1)

0 = Do not drive DS21458 Port 2 RSER onto PCM_RSER

1 = Logically OR DS21458 Port 2 RSER with selected other RSER pins and drive onto PCM_RSER

Bit 4 to 5: DS21458 Port 3 TSER Source (T3S0, T3S1)

0 = Do not drive DS21458 Port 3 RSER onto PCM_RSER

1 = Logically OR DS21458 Port 3 RSER with selected other RSER pins and drive onto PCM_RSER

Bit 6 to 7: DS21458 Port 4 TSER Source (T4S0, T4S1)

0 = Do not drive DS21458 Port 4 RSER onto PCM_RSER

1 = Logically OR DS21458 Port 4 RSER with selected other RSER pins and drive onto PCM_RSER

Note: PRSER register is for use with the DK2000 only.

Register Name: **PSYNC** Register Description: **PCM RSYNC/TSYNC Source** Register Offset: **0x001A**

Bit #	7	6	5	4	3	2	1	0
Name	—	—	T2SR	T1SR	—		R2SR	R1SR
Default	—	—	0	0	—		0	0

Bit 0 to 1: PCM_RSYNC Source

R2SR, R1SR	PCM_RSYNC SOURCE
00	PCM_RSYNC is driven by DS21458 port 1 RSYNC
01	PCM_RSYNC is driven by DS21458 port 2 RSYNC
10	PCM_RSYNC is driven by DS21458 port 3 RSYNC
11	PCM_RSYNC is driven by DS21458 port 4 RSYNC

Bit 4 to 5: PCM_TSYNC Source

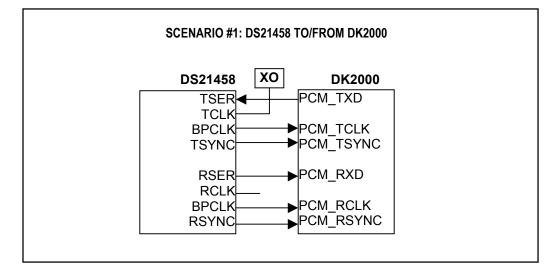
T2SR, T1SR	PCM_TSYNC SOURCE
00	PCM_TSYNC is driven by DS21458 port 1 TSYNC
01	PCM_TSYNC is driven by DS21458 port 2 TSYNC
10	PCM_TSYNC is driven by DS21458 port 3 TSYNC
11	PCM_TSYNC is driven by DS21458 port 4 TSYNC

Note: PSYNC register is for use with the DK2000 only.

Register Name: **PCLK** Register Description: **PCM RCLK/TCLK Source** Register Offset: **0x001B**

Bit #	7	6	5	4	3	2	1	0
Name	_	TCM	T2SR	T1SR	_	RCM	R2SR	R1SR
Default		0	0	0	_	0	0	0

Bit 0 to 2: PCM_RCLK Source


RCM,R2SR, R1SR	PCM_RCLK SOURCE
000	PCM_RCLK is driven by DS21458 port 1 RCLK
001	PCM_RCLK is driven by DS21458 port 2 RCLK
010	PCM_RCLK is driven by DS21458 port 3 RCLK
011	PCM_RCLK is driven by DS21458 port 4 RCLK
100	PCM_RCLK is driven by DS21458 port 1 BPCLK
101	PCM_RCLK is driven by DS21458 port 2 BPCLK
110	PCM_RCLK is driven by DS21458 port 3 BPCLK
111	PCM_RCLK is driven by DS21458 port 4 BPCLK

Bit 4 to 5: PCM_TCLK Source

TCM,T2SR, T1SR	PCM_TCLK SOURCE
000	PCM_TCLK is driven by source used for DS21458 port 1 TCLK
001	PCM_TCLK is driven by source used for DS21458 port 2 TCLK
010	PCM_TCLK is driven by source used for DS21458 port 3 TCLK
011	PCM_TCLK is driven by source used for DS21458 port 4 TCLK
100	PCM_TCLK is driven by DS21458 port 1 BPCLK
101	PCM_TCLK is driven by DS21458 port 2 BPCLK
110	PCM_TCLK is driven by DS21458 port 3 BPCLK
111	PCM_TCLK is driven by DS21458 port 4 BPCLK

Note: PCLK register is for use with the DK2000 only.

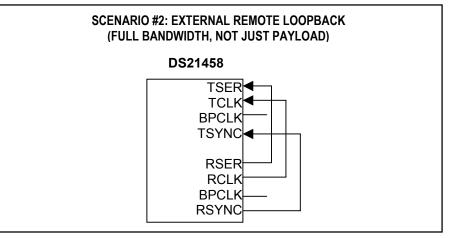

FPGA CONTROL EXAMPLES

Table 8. FPGA Configuration for Scenario #1 (Port 1, T1 Mode)

REGISTER	SETTING	COMMENT
MCSR	0X01	Drive DS21458 ports 1 and 3 MCLK with 2.048MHz
TCSR	0X00	Drive TCLK with 1.544MHz
SYSCLKT	0X00	Drive TSYSCLK with 1.544MHz
SYSCLKR	0X00	Drive RSYSCLK with 1.544MHz
SYNC1	0X00	Tri-state FPGA driver pin for DS21458 TSYNC1
SYNC2	0X01	Drive TSSYNC1 with RSYNC1
SYNC3	0X00	Tri-state FPGA driver pin for DS21458 RSYNC
TSERS	0X02	Drive DS21458 TSER1 with data from PCM bus
PRSER	0X01	Drive DS21458 RSER1 onto PCM bus
PSYNC	0X00	PCM RSYNC and PCM TSYNC are provided by DS21458 port 1 RSYNC and TSYNC (respectively)
PCLK	0X44	PCM RCLK and TCLK are driven by port 1 BPCLK

FPGA CONTROL EXAMPLES (continued)

Table 9. FPGA Configuration for Scenario #2 (Port 1, T1 Mode)

REGISTER	SETTING	COMMENT	
MCSR	0X01	Drive DS21458 ports 1 and 3 MCLK with 2.048MHz	
TCSR	0X02	Drive TCLK1 with RCLK1	
SYSCLKT	0X00	Drive TSYSCLK with 1.544MHz	
SYSCLKR	0X00	Drive RSYSCLK with 1.544MHz	
SYNC1	0X01	Drive TSYNC1 with RSYNC1	
SYNC2	0X01	Drive TSSYNC1 with RSYNC1	
SYNC3	0X00	Tri-state FPGA driver pin for DS21458 RSYNC	
TSERS	0X01	Drive DS21458 TSER1 with data from RSER1	
PRSER	N/A	Unused	
PSYNC	N/A	Unused	
PCLK	N/A	Unused	

Table 10. DS21458 Partial Configuration for Scenario #2 (Port 1, T1 Mode)

REGISTER	SETTING	COMMENT
IOCR1	TSIO = 0; RSIO = 0	TSYNC is an input, RSYNC is an output
ESCR	TESE = 0; RESE = 0	Bypass Rx and Tx elastic stores
CCR1	TCSS1 = 0; TCSS2 = 0	TCLK is driven by TCLK pin

DS21458 INFORMATION

For more information about the DS21458, please consult the DS21458 data sheet available on our website at <u>www.maxim-ic.com/DS21458</u>. Software downloads are also available for this design kit.

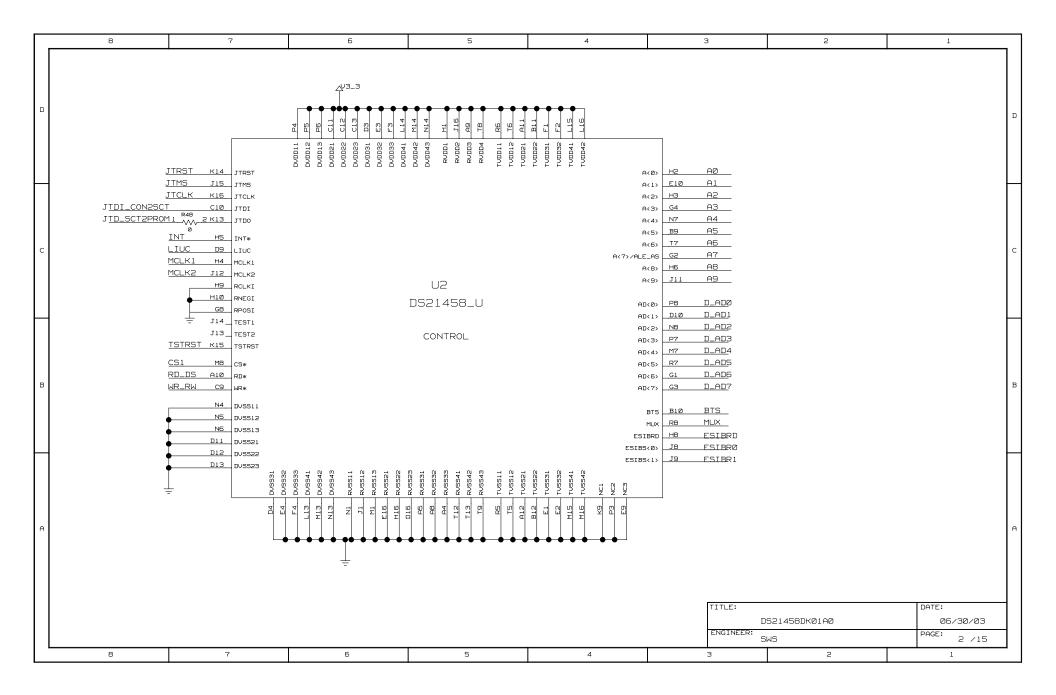
DS21458DK INFORMATION

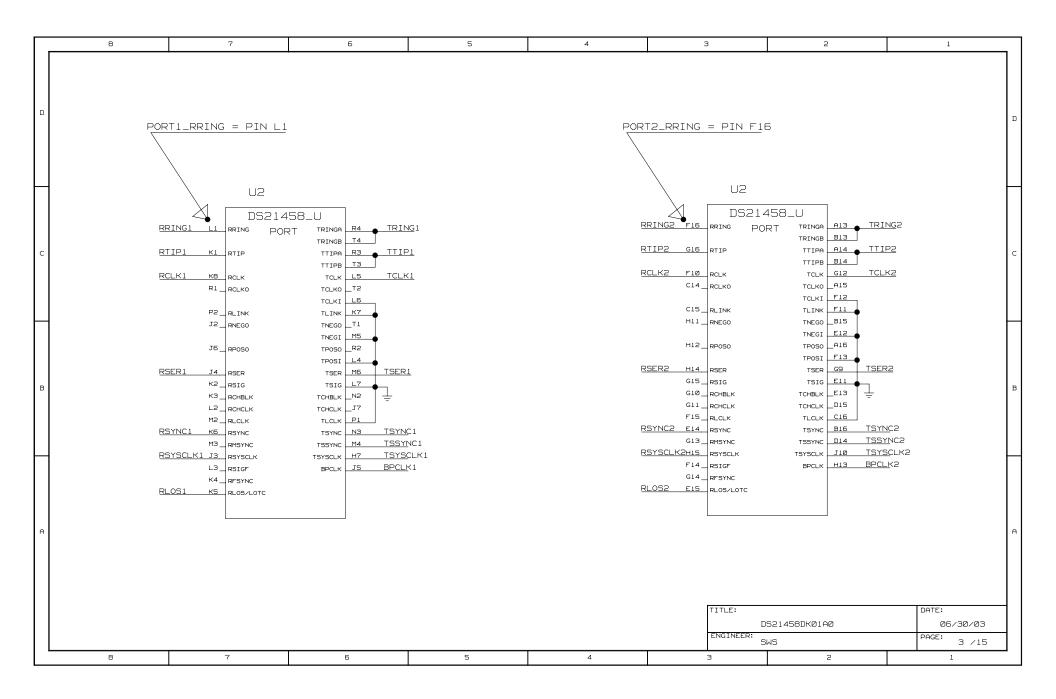
For more information about the DS21458DK, including software downloads, please consult the DS21458DK data sheet available on our website at <u>www.maxim-ic.com/DS21458DK</u>.

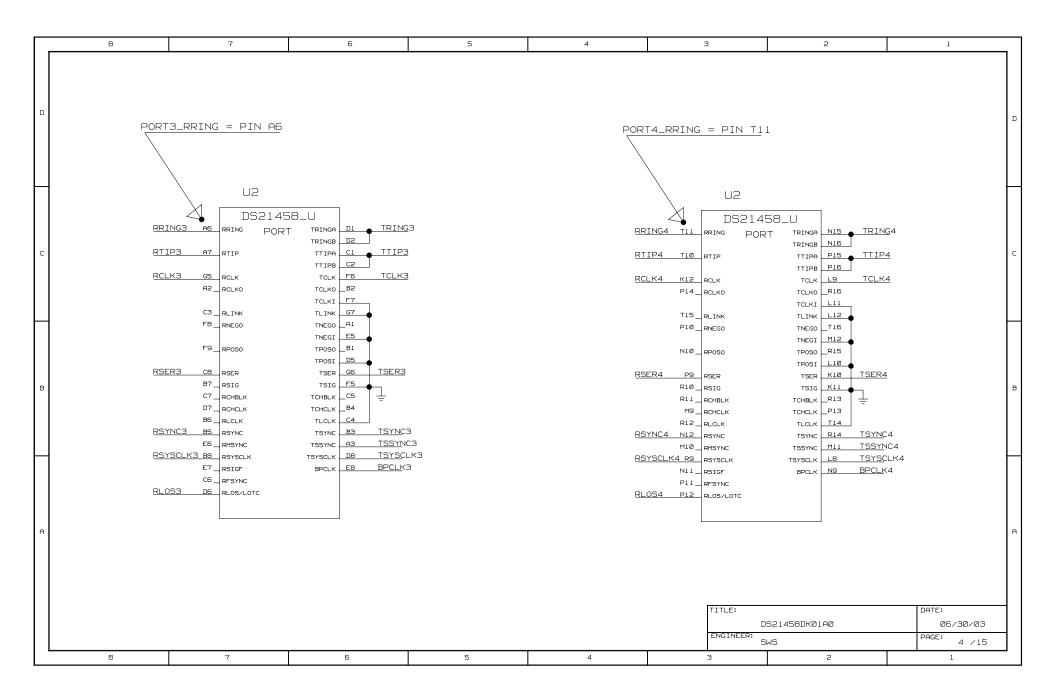
TECHNICAL SUPPORT

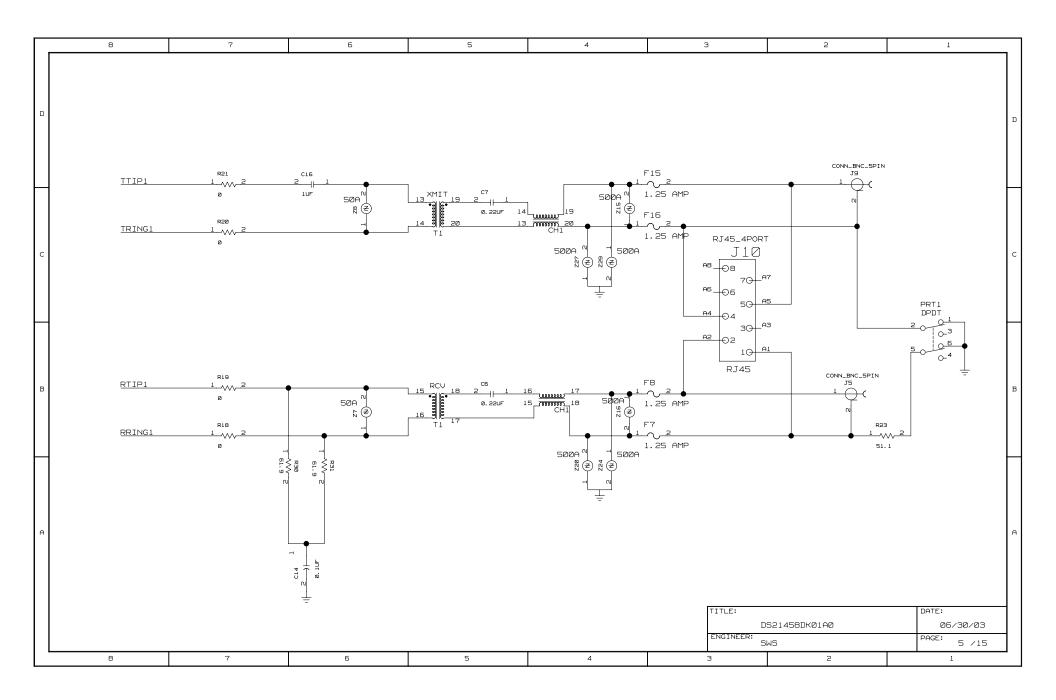
For additional technical support, please e-mail your questions to telecom.support@dalsemi.com.

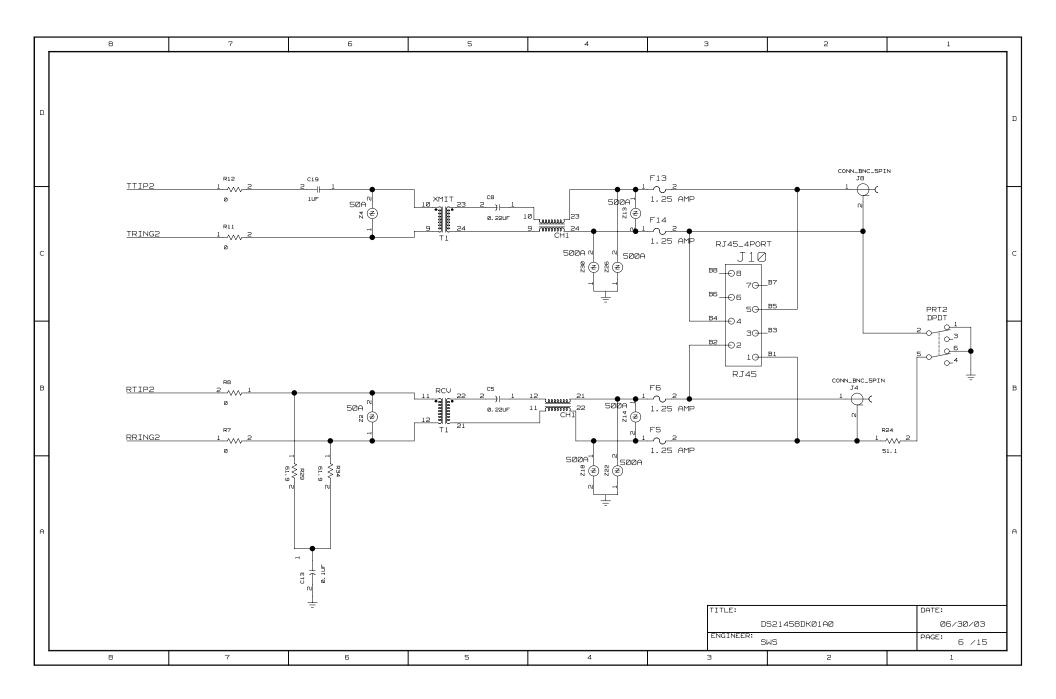
SCHEMATICS

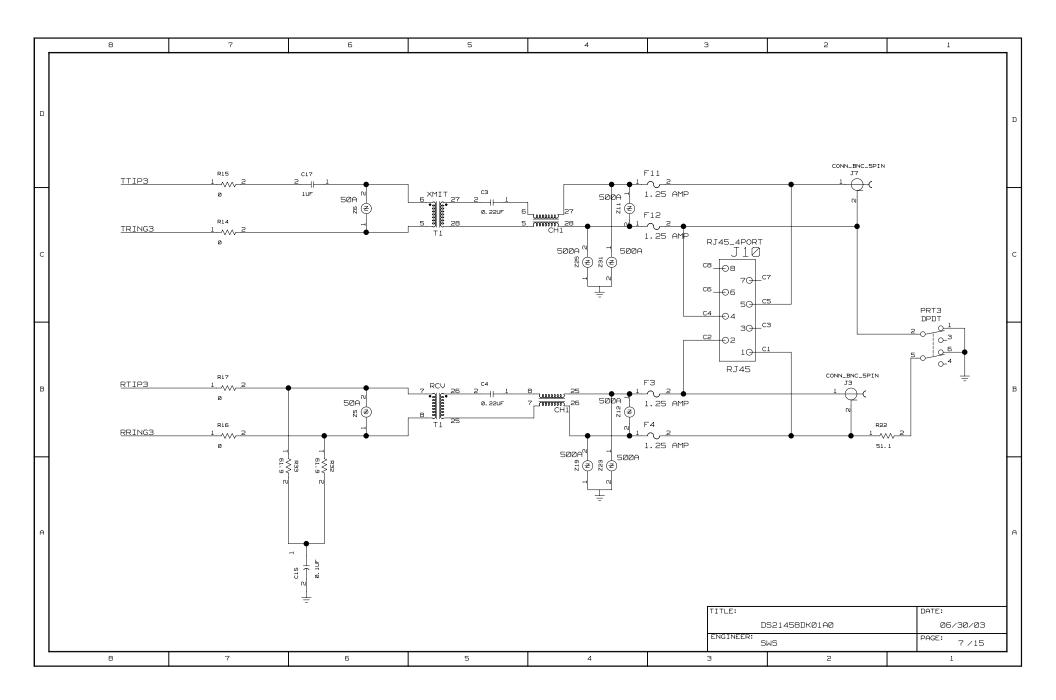

The DS21458DK schematics are featured at the end of this document.

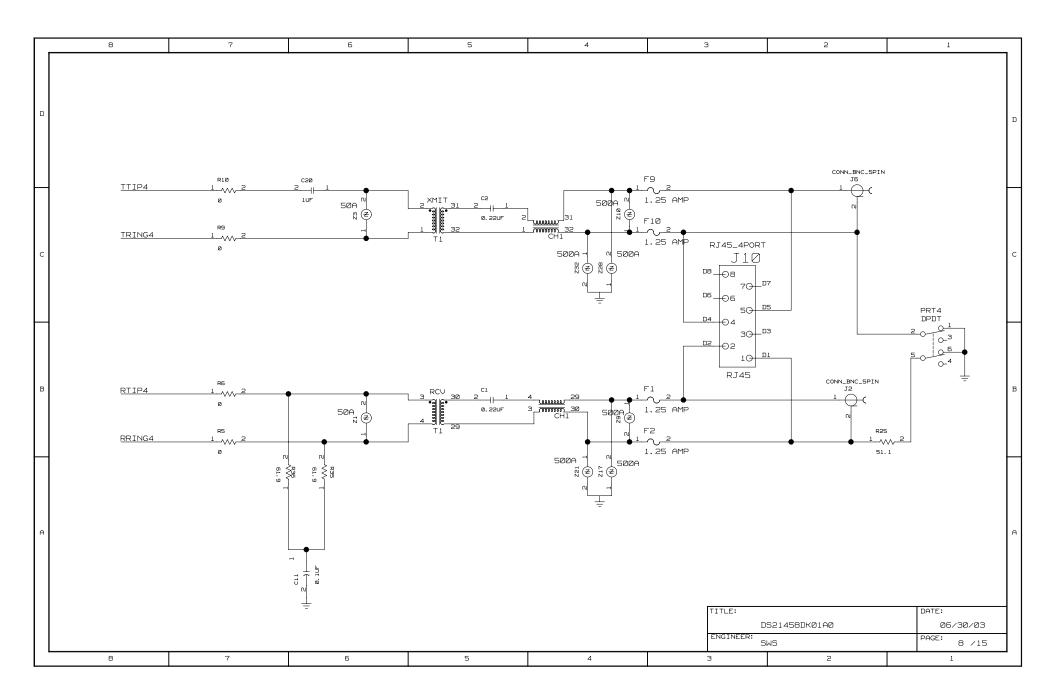

17 of 32

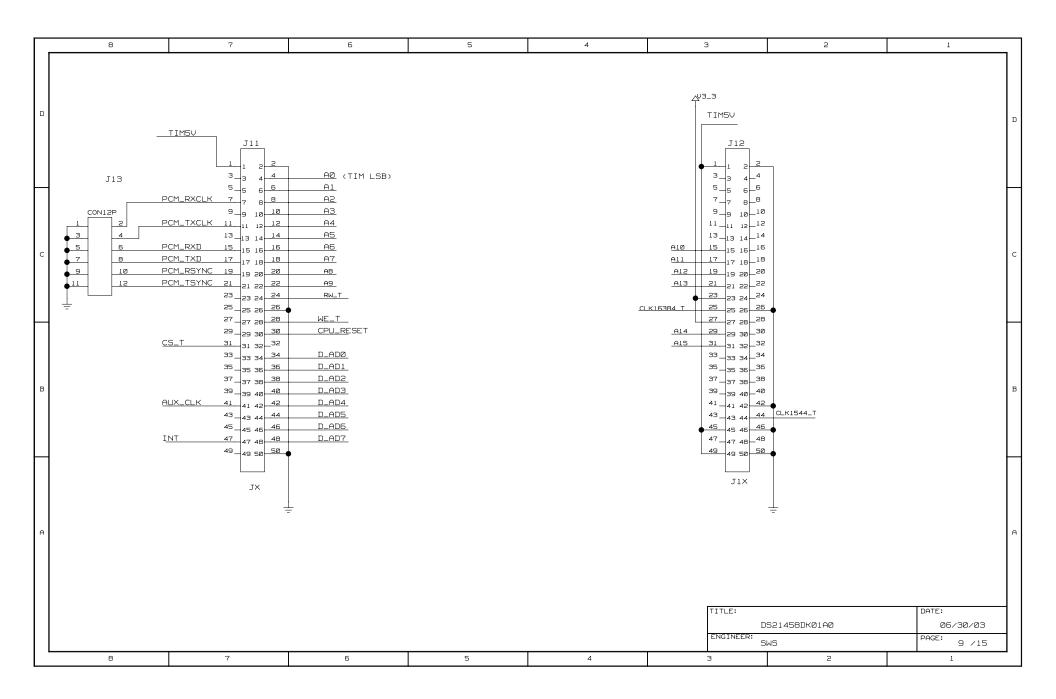

Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product. No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2006 Maxim Integrated Products • Printed USA

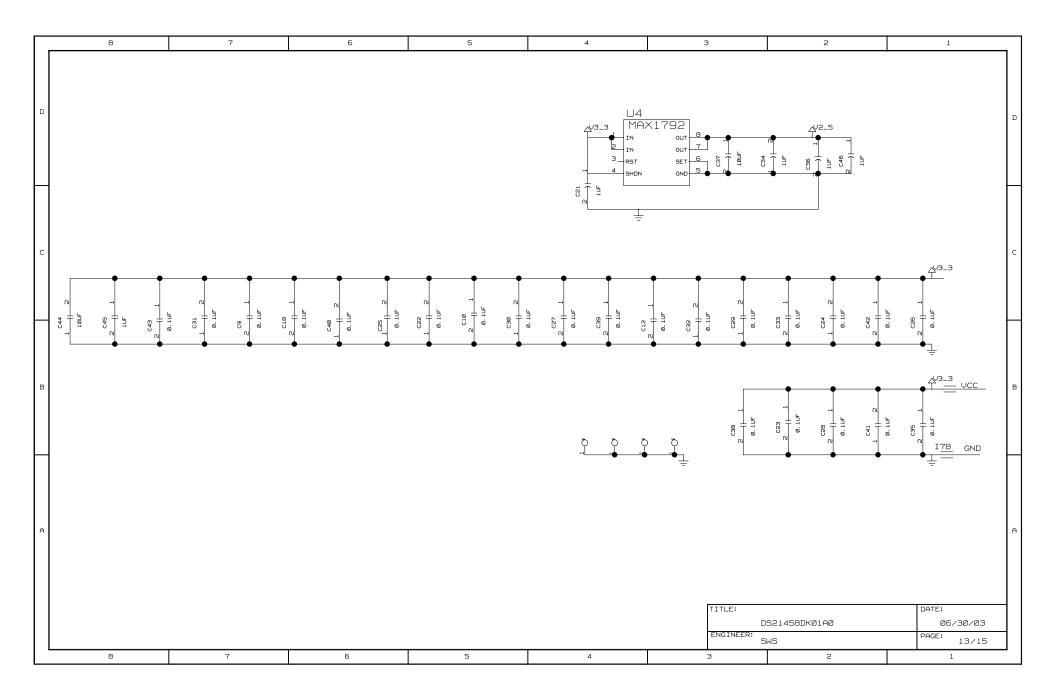

The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor.


	8	7	6	5	4	3	2	1	
ם		052	145)ES]	GN	I		E
с									c
в					DEUISIONS	MODIFICATION FROM DS2			в
A	3. PORT 1 AND 2 4. PORT 3 AND 4 5. PORT 1 TX / 6. PORT 2 TX / 7. PORT 3 TX / 8. PORT 4 TX / 9. DAUGHTER CAR 10. FPGA CROSS C 11. FPGA AND CON		NNECTION	2. ADDED A8 AND 3. REMOVED RLOS 4. REMOVED SERI 5. RAN PIN SWAP 6. REMOVED TEST 7. REMOVED CONN 8. REMOVED CONN -FPGA RESET 9. CHANGED SWIT 10. ADDED T1 E1 D	CTIONS CHANGE FROM 4X A9 TO DS21458 AND FPG FPGA CONNECTION, RLOS AL CONFIG PROM, REPLAC ON XILINX PART TO ACC POINTS IN JTAG CHAIN ECTION BETWEEN 2.5V SL ECTION BETWEEN CPU RES IS NOW DRIVEN BY INTEF CH NAMES FOR PORT 1-4 ESIGNATION TO SWITCHES CREEN ON JTAG CONNECTO	TO 1X (ONLY PULLDOWNS IA, REMOVED CS2-4 S LED IS NOW DRIVEN BY ED WITH XILINX FLASH OMMODATE PIN DIFFEREN IPPLY MONITOR AND FPGA ET AND FPGA PROGRAM F NAL STATE MACHINE FROM SW PREFIX TO PRT FOR PORT 1-4 R	REMAIN) THE SCT BASED CONFIG PROM CES BETWEEN DS21458 A INIT PIN IN	ND D521055	A
	12. FPGA CLOCK A 13. SUPPLY DECOL 14. SIGNAL CROSS 15. COMPONENT CR 8	PLING	6	5	4	ENGINEER	S21458DKØ1AØ WS 2	DATE: 05/30, PAGE: 1	/03 /15









Γ	8	7	6	5	4	З	2	1
ם				RSER2 ISER2 ISER2 RCLK2 ICLK2 ICLK2 BPCLK2 RSYSCLK2	TSYSCLK2 TSYNC2 RSYNC2 RSYNC2			ם
с			TSER1 114 101 RCLK1 117 101 TCLK1 77 103 DESCULUT 104 104	(0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>са</u> <u>т</u> <u>б</u> <u>б</u> <u>б</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	125 TSSYNC2 124 RSER3 123 TSER3 122 RCLK3 115 TCLK3 118 BPCLK3		c
в			RSYSCLK1 74 101 TSYSCLK1 101 106 RSYNC1 120 107 TSYNC1 75 10 TSYNC1 85 103	7-4 ¥ I/O 5-4 Z 5-4 Z 5-4 H 4-4 3-4/UREF2_4 2-4 BANI 1-4 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0	PORT Ž 107_6 108_6 109_6 1010_6/UREF2_6 1011_6	131 RSYSCLK3 121 TSYSCLK3 130 RSYNC3 115 TSYNC3 133 TSSYNC3 138 PCM_RXCLK 136 PCM_RXCLK		В
A					RSYNCA 80 TSYNCA 76 TSSYNCA 139 PCM RSYNC 140 PCM TSYNC 141			A
	8	7	6	5	4	ENGINEER:	S21458DKØ1AØ WS 2	DATE: 05/30/03 PAGE: 10/15

	8	7	6	5	4	3	2	1	
а		D BIAS RESISTORS ARE LIUC INT				59 D_ADS 28 D_AD3 42 D_AD3 26 D_AD3 26 D_AD3 26 D_AD3 21 D_AD2 23 D_AD2 21 INT_IND 22 MCLK1 29 MCLK2 29 MCLK2			D
с		ESIBRO ESIBRO JIRST ISTRST	2 R45 1 1 R39 2 2 R41 1 2 R41 1 1 8K	CLK15 A2 A1 A2 A5 A2 A5 A5 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1	27 108_0 2 5 3 19 105_0 0 4 56 5 23 104_0 2 5 66 103_0 10 103_0 10	"BANK 1 " U1 XC2S50_U M I∕O PORT ¥ I	102_2 50 F 102_2 49 () 104_2/VREF1_2 48 105_2 64 105_2/D2 46 106_2/D2 46 107_2/D1 44 108_2 -3 010_2/VREF2_2 41 101_2 -40 101_2 39 CFG_ 39		с
A		R45 2 √√3_3 R42 1 √√2 330 R42 330 R42 330 R43 330 R43 330 R44	RED 1 1 2 INT_IND GREEN 2 1 2 RLOS1 DS5 GREEN 2 1 2 RLOS2 DS4 GREEN 2 1 2 RLOS2 DS4 GREEN 2 1 2 RLOS3 DS3 GREEN		<u>АВ 54</u> 4013.3/ТRDY.3 <u>А</u> В 54 4013.3/ТRDY.3 С10 57	Ioll.3-Vater2 60 1010.3-Vater2 43 1010.3-Vater2 60 109.3 60 109.3 103.3 109.3 103.3 109.3 103.3 109.3 103.3 109.3 103.3 109.3 103.3 100.3 104.3 107.3 105.3 106.3 105.3 106.3 105.3 106.3 105.3 104.3 105.3 102.3 105.3 101.3		K ¹ → ² → 3	A
	8	ка4 330 7	GREEN 2 1 12 RLOS4 DS2 5	5	4	ENGINEER:	S21458DKØ1AØ WS 2	DATE: / 05/30/03 PAGE: 12/15 1	-

	8	7	6	5	4	З	2	1
ם	**** Signal Cross-Reference A0 9DE A1 9CE A2 9CE 9CE 12CC A3 9CE A4 9CE A5 9CE A6 9CE A7 9CE A8 9CE A9 9CE A9 9CE	for the entire design **** R R (> 203< R (> 203< R)	SER3 4B8> 10C3<> SER4 4B4> 10P3<> STNC1 3B6<> 10B4<> STNC2 3B4<> 10B4<> STNC2 3B4<> 10B4<> STNC3 4B4<> 10B4<> STNC4 4B4<> 10B4<> STNC4 4B4<> 10B4<> STSCLK1 10B5<> 3B4< STSCLK2 10D5<> 3B4< STSCLK4 10B5<< 4B8< STSLK4 10B5<< 4B4< STSCLK4 10B5<< 4B4< TIP2 3C4< 4C8 7B6<		1 '		1 -	
с	A11 9C3↔ A12 9C3↔ 124 A13 9C3↔ 126 A14 9B3↔ 126 A14 9B3↔ 126 AL4 9B3↔ 126 AL5 9B3↔ 126 BCLK1 3R5 1005 BPCLK2 3A1 1005 BPCLK3 4A6 1085 BCCLK4 1187↔ 116 CFG_DIN 114x 117 CLK1544_T 9B2↔ 126 CLLR584_T 9C4↔ 120 CS1 1284↔ 128 CS1 1284↔ 128 CS1 1284↔ 128 CS1 1284↔ 128 CS1 128 23 DAP0 283 ↔ 986 126	Kb R Kb R Kb T Kc T	TTPA 4C4 BB6 NLT 9C65 3C5 CLK1 10D55 3C5 CLK2 10D55 3C4 CLK3 10D55 3C4 CLK4 10D55 4C5 CLK4 10D55 4C5 CLK4 10D55 5D8 RING1 3C5 5C8 RING2 3C1 6C8 RING3 4C5 7C8 RING4 4C1 8C8 SER1 10D55 3B1 SER2 10D55 3B1 SER4 10D56 3B5 SSYNC1 10D56 3B1 SSYNC2 10D33 4B5 SSYNC3 10D34 4B5 STRT 2B6 12P7 STNC1 10D54 4B5					
в	L.AD2 2B3 9B3 D.AD3 2B3 9B6 D.AD4 2B3 9B6 D.AD5 2B3 9B6 INT 2C65 9B6 INT 12B6 12C7 JTDL 12B6 12 JTDL_PROVESPART 11A6 11 JTHS 11A6 11 JTMS 11A8 11 JTMST 2D8 126 LUC 2C6 127	> 12030 > 12030 > 12030 > 12030 > 12040 > 12040 T > 12040 T > 12040 T 2205 12075 T 12055 12075 T 12055 12075 T 12055 T 12	STNC2 SD(X) 1804(X) STNC3 4B6(X) 1894(X) STNC4 4B1(X) 1894(X) STNC4 4B1(X) 1894(X) STNC4 4B1(X) 1894(X) STSCLK1 1895(X) 3B5(X) STSCLK2 1893(X) 4B6(X) STSCLK3 1893(X) 4B6(X) STSCLK4 1895(X) 4B1(X) STSCLK3 1893(X) 4B1(X) STSCLK4 1895(X) 4B1(X) STSCLK4 1895(X) 4B1(X) TIP1 3C5(X) 5C8(X) TIP3 4C5(X) 7C8(X) TIP4 4C1(X) 8C8(X) ELT 9B6(X) 12B1(X) RRN 12C1(X) 2B8(X) LINIT 1186(X) 1187(X)					1
A	MCLK1 1203<> 205 MCLK2 1203<> 205 MCLX 1201<> 205 MUX 1201<> 205 MUX 1201<> 205 PCM_BXOLK 906 PCM_BXOLK 906 PCM_TSYNC 906 PCM_TSYNC 906 PCM_TSYNC 906 PCM_TSYNC 906 PCM_TSYNC 906 PCM_TSYNC 906 RCLK2 304 RCLK3 405 RCLK4 404 A055 1201 RCLS3 364 RCLS3 364 RCLS3 364 RCLS3 464 1246 1266 RL051 364 1266 1265 RTING1 306 RTING3 404 RSER1 386 RSER2 384	K K K K K0 K K0 K K0 K S K S K S K S K S K S K S K S K				TITLE:		DATE:
						ENGINEER:		PAGE:
	8	7	6	5	4	З	2	1

0 0	8	7	6	5	4	:	3	2	1	
A CS CP 1355 CP CP	C1 CAP 885 C2 CAP 8C5 C3 CAP 7C5 C4 CAP 785 C5 CAP 585 C6 CAP 585 C7 CAP 555 C7 CAP 555 C8 CAP 555 C9 CAP 1387 C10 CAP 1385 C11 CAP 1385 C12 CAP 1385 C12 CAP 5A6 C12 CAP 5A6 C13 CAP 5A6 C14 CAP 5A6 C15 CAP 5A6 C15 CAP 5A6 C16 CAP 5B6 C17 CAP 5A6 C18 CAP 5A6 C18 CAP 7A6 C19 CAP 7A6	the entire design ***	JB CONN.BNC.SPIN 502 J10 RJ45.B SC3 6C3 7C3 BC3 J112 CONN.S072 BD3 J12 CONN.S072 BD3 J13 CONN.S072 BD3 J14 XC1NN.C772 JD1 J15 CONN.S072 BD3 J14 XC1NN.C772 JD1 J17 CONN.S072 BD3 J18 XC1NC.272 JD1 PRT1 SNITCH_DPDT_SLIDE_SP 7C1 PRT2 SNITCH_DPDT_SLIDE_SP 7C1 PRT3 SNITCH_DPDT_SLIDE_SP 7C1 PRT4 SNITCH_DPT_SLIDE_SP 7C1 PRT5 SLIDE R2 RE51 12B5 R3 RE5 12D5 R4 RE5 12D5 R5 RE5 BB7 R18 RE5 GD7 R19 RE5 GD7 R11 RE5 GD7 R13 RE51 11C2 R14 RE5 TD7 R15 RE7 RE7 R14 RE5 TD7	Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15 Z16 Z17 Z18 Z18 Z18 Z18 Z18 Z19 Z29 Z29 Z29 Z24 Z22 Z22 Z24 Z22 Z24 Z25 Z26 Z27 Z26 Z29 Z30 Z30	SIDACTOR_2 785 SIDACTOR_2 765 SIDACTOR_2 565 SIDACTOR_2 565 SIDACTOR_2 864 SIDACTOR_2 864 SIDACTOR_2 784 SIDACTOR_2 784 SIDACTOR_2 564 SIDACTOR_2 584 SIDACTOR_2 884 SIDACTOR_2 884 SIDACTOR_2 884 SIDACTOR_2 884 SIDACTOR_2 884 SIDACTOR_2 884 SIDACTOR_2 884 SIDACTOR_2 784 SIDACTOR_2 784 SIDACTOR_2 584 SIDACTOR_2 584 SIDACTOR_2 564 SIDACTOR_2 764					c
A PAG PRS1 1287 F1 FUSE BB4 PAG PRS1 1187 F2 FUSE BB4 PAG PRS1 1187 F3 FUSE TA4 PRS1 1282 PRS1 PRS1 F4 FUSE FAG PRS1 1287 PRS1 PRS1 PRS1 F7 FUSE FAG PRS1 1287 PRS1 P	С33 САР 13В2 C34 САР 13D3 C35 САР 13D3 C36 САР 13D3 C37 САР 13D3 C38 САР 13B3 C39 САР 13B3 C39 САР 13B4 C40 САР 13B5 C42 САР 13B5 C42 САР 13B5 C44 САР 13B5 C45 САР 13B5 C46 САР 13B5 D51 LED 12B6 D52 LED 12A6 D53 LED 12A6 D54 LED	C4 684 6C4 784 7C4 884	R23 RES 552 R24 RES 652 R25 RES 852 R26 RES 11A5 R27 RES1 11A7 R28 RES1 5A6 R30 RES1 5A6 R31 RES1 5A6 R32 RES1 7A6 R33 RES1 6A6 R33 RES1 6A6 R35 RES1 6A6 R35 RES1 12A7 R44 RES1 12A7 R44 RES1 12A7							E
	A D55 LED 1286 D55 LED 1282 F1 FUSE 884 F2 FUSE 884 F3 FUSE 784 F4 FUSE 784 F5 FUSE 683 F7 FUSE 683 F7 FUSE 683 F7 FUSE 684 F1 FUSE 684 F1 FUSE 604 F13 FUSE 603 F14 FUSE 603 F14 FUSE 603 F15 FUSE 504 F15 FUSE 504 F16 FUSE 504 J1 CONN_BNC_SPIN 882 J2 CONN_BNC_SPIN 882 J3 CONN_BNC_SPIN 882 J4 CONN_BNC_SPIN 582 J5 CONN_BNC		R45 RE5 12C6 R46 RE51 12B7 R47 RE51 12B7 R48 RE5 2C7 R49 RE51 12B2 T1 XFRR_OURIPORT_IT_SB5 SC5 6B5 f BC5 TP1 TSTENT_SNC 13B3 TB7 TESTFOINT 12R3 TB7 TESTFOINT 12R3 TP7 TESTFOINT 12R3 TB7 TP8 TESTFOINT 12R3 TB7 TP9 TESTFOINT 12R3 TB7 TP9 TSTFNI_SNC 13B4 TP25 TP24 TSTFNI_SNC 13B4 T255 U1 XC25S9.LJ 12C5 11C3 12C3 U2 U2 DS2145LJ 4C5 13C3 3C7 4C3 4C7 U3 XC18/W20044CLJ 11A6 U4 MR/T92 13D4 Z1 SIDACTOR_2 8B5 Z2 Z2 SIDACTOR_2 8B5 Z2							۹
	8	7	6	5	4		3	2	PAGE:	