R79 Series Single Metallized Polypropylene Film, Radial, 5 mm Lead Spacing, Multipurpose Applications

Overview

The R79 Series is constructed of metallized polypropylene flm with radial leads of tinned wire. The radial leads are electrically welded to the metal layer on the ends of the capacitor winding. The capacitor is encapsulated with a self-extinguishing thermosetting resin in a box material meeting the UL 94V–0 requirements.

Applications

Typical applications include timing, oscillator circuits, high frequency coupling and decoupling applications. Not suitable for across-the-line application (see Suppressor Capacitors).

Benefits

Voltage range: 160 – 630 VDC
Capacitance range: 0.001 – 0.22 µF

• Lead Spacing: 5 mm

Capacitance tolerance: ±5%, ±10%, ±20%
Climatic category: 55/105/56 IEC 60068-1

• Operating temperature range of -55°C to +105°C

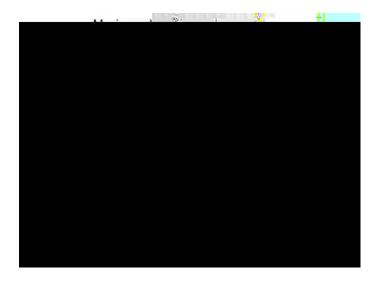
· RoHS compliance and lead-free terminations

• Tape and reel packaging in accordance with IEC 60286-2

Self-healing

Part Number System

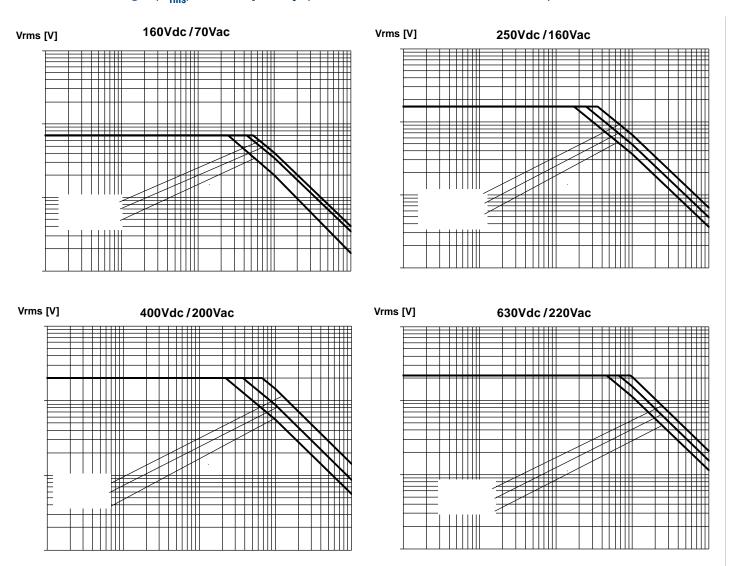
R79	G	C	2390	AA	40	K
Series	Rated Voltage (VDC)	Lead Spacing (mm)	Capacitance Code (pF)	Packaging	Internal Use	Capacitance Tolerance
Metallized Polypropylene	G = 160 I = 250 M = 400 P = 630	C = 5	The last three digits represent signif cant fgures. The frst digit specifes the total number of zeros to be added.	See Ordering Options Table	40 45	H = 2.5% J = ±5% K = ±10%


Ordering Options Table

Lead Spacing Nominal (mm)	Type of Leads and Packaging	Lead Length (mm)	Lead and Packaging Code
	Standard Lead and Packaging Options		
	Bulk (Bag)–Short Leads	4 +1.5/-0	AA
	Ammo Pack	H _o =18.5 +/-0.5	DQ
5			

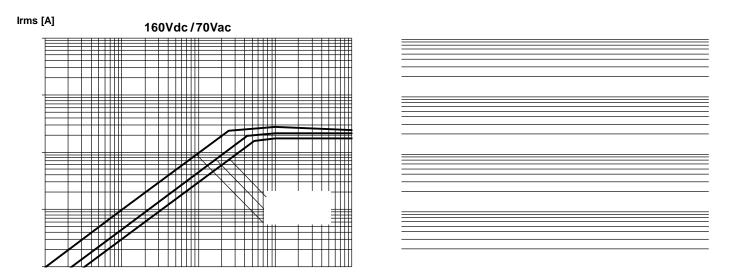
Performance Characteristics

Dielectric	Dalumranulana fi						
	Polypropylene flm						
Plates	Metal layer depo	Metal layer deposited by evaporation under vacuum					
Winding	Non-inductive ty	ре					
Leads	Tinned wire						
Protection	Plastic case, ther	mosetting resin flle	d. Box material is s	solvent resistant and	fame retardant according to UL94.		
Related Documents	IEC 60384-16						
Rated Voltage V _R (VDC)	160	250	400	630			
Rated Voltage V _R (VAC)	70	160	200	220			
Capacitance Range (μF)	0.039 – 0.22	0.012 - 0.15	0.0039 – 0.047	0.001 - 0.018			
Capacitance Values	E12 series (IEC 6	0063) measured @	1 kHz and +20 ±1°	С			
Capacitance Tolerance	±2.5%, ±5%, ±10%	6					
Operating Temperature Range	-55°C to +105°C						
Rated Temperature T _R	+85°C						
Voltage Derating	Above +85°C DC	and AC voltage der	ating is 1.25%/°C				
Climatic Category	55/105/56 IEC 6	0068-1					
	Storage time: ≤ 2	4 months from the	date marked on the	e label package			
	Average relative humidity per year ≤ 70%						
Storage Conditions	RH ≤ 85% for 30	days randomly distr	ibuted throughout	the year			
	Dew is absent						
	Temperature: -4	0 to 80°C (see "Max	imum Humidity in	Storage Conditions'	' graph below)		


Performance Characteristics cont'd

	_

^{*} typical value



Maximum Voltage (V_{rms}) vs. Frequency (Sinusoidal Waveform/Th ≤ 40 °C)

Maximum Current (I_{rms}) vs. Frequency (Sinusoidal Waveform/Th $\leq 40^{\circ}$ C)

Environmental Test Data

Damp Heat, Steady State Test	Test Cor	nditions:	Performances	
	Temperature: Relative humidity (RH): Test duration:	+40°C ± 2°C 93% ± 2% 56 days	Δ C/C ≤ 3%, Δ tanδ ≤ 0.001 @ 1 kHz IR after test ≥ 50% of initial limit	
Endurance Test	Test Co	nditions	Performances	
	Temperature: Voltage applied: Test duration:	+85°C ±2°C 1.25 x V _R (DC) 2,000 hours	Δ C/C ≤ 3%, Δ tanδ ≤ 0.001 @10 kHz IR after test ≥ 50% of initial limit	
Resistance to Soldering Heat Test	Test Conditions		Performances	
	Solder bath temperature: Dipping time (with heat screen):	260°C ±5°C 10 seconds ±1 second	Δ C/C ≤ 2%, Δ tanδ ≤ 0.001 @10 kHz for C ≤ 1μF IR after test ≥ initial limit	

Environmental Compliance

All KEMET pulse capacitors are RoHS Compliant.

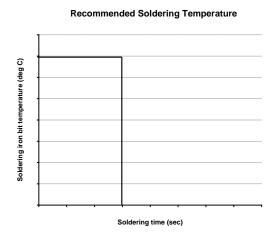
Table 1 - Ratings & Part Number Reference

VDC	VAC	Capacitance Value (µF)	Dime	nsions i		Lead	dV/dt	Max K ₀ (V²/μs)	New KEMET	Legacy Part
100	TAG	Value (µF)	В	Н В	Н	Specing (p)	(V/µs)	(V ² /µs)	Part Number	Number

⁽¹⁾ Insert lead and packaging code. See Ordering Options Table for available options.

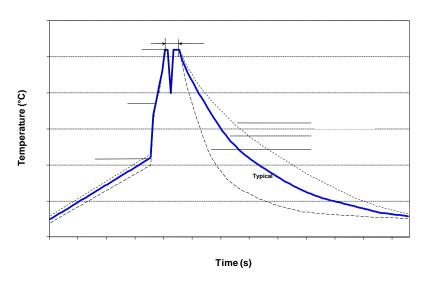
⁽²⁾ J = 5%, K = 10%, M = 20%

Soldering Process


The implementation of the RoHS directive has resulted in the selection of SnAgCu (SAC) alloys or SnCu alloys as primary solder. This has increased the liquidus temperature from that of 183° C for SnPb eutectic alloy to $217 - 221^{\circ}$ C for the new alloys. As a result, the heat stress to the components, even in wave soldering, has increased considerably due to higher pre-heat and wave temperatures. Polypropylene capacitors are especially sensitive to heat (the melting point of polypropylene is $160 - 170^{\circ}$ C). Wave soldering can be destructive, especially for mechanically small polypropylene capacitors (with lead spacing of 5 mm to 15 mm), and great care has to be taken during soldering. The recommended solder profles from KEMET should be used. Please consult KEMET with any questions. In general, the wave soldering curve from IEC Publication 61760-1 Edition 2 serves as a solid guideline for successful soldering. Please see Figure 1.

Refow soldering is not recommended for through-hole flm capacitors. Exposing capacitors to a soldering profle in excess of the above the recommended limits may result to degradation or permanent damage to the capacitors.

Do not place the polypropylene capacitor through an adhesive curing oven to cure resin for surface mount components. Insert through-hole parts after the curing of surface mount parts. Consult KEMET to discuss the actual temperature profle in the oven, if through-hole components must pass through the adhesive curing process. A maximum two soldering cycles is recommended. Please allow time for the capacitor surface temperature to return to a normal temperature before the second soldering cycle.


Manual Soldering Recommendations

Following is the recommendation for manual soldering with a soldering iron.

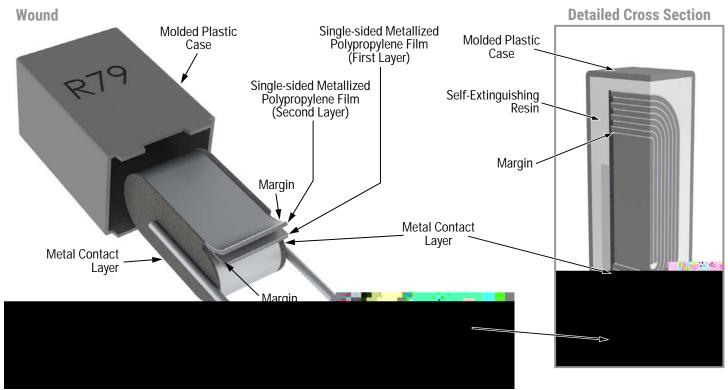
The soldering iron tip temperature should be set at 350°C (+10°C maximum) with the soldering duration not to exceed more than 3 seconds.

Wave Soldering Recommendations

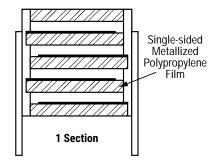
Soldering Process cont'd

Wave Soldering Recommendations cont'd

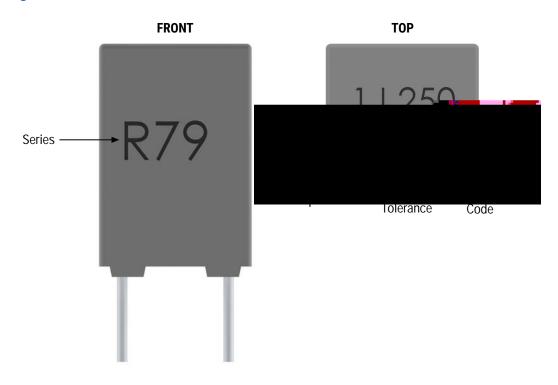
1. The table indicates the maximum set-up temperature of the soldering process Figure 1


Dielectric		imum Pre emperatu		Maximum Peak Soldering Temperature		
Film Material	Capacitor Pitch ≤ 10 mm	Capacitor Pitch = 15 mm	Capacitor Pitch > 15 mm	Capacitor Pitch ≤ 15 mm	Capacitor Pitch > 15 mm	
Polyester	130°C	130°C	130°C	270°C	270°C	
Polypropylene	100°C	110°C	130°C	260°C	270°C	
Paper	130°C	130°C	140°C	270°C	270°C	
Polyphenylene Sulphide	150°C	150°C	160°C	270°C	270°C	

2. The maximum temperature measured inside the capacitor: Set the temperature so that inside the element the maximum temperature is below the limit:

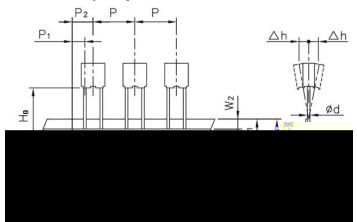

Dielectric Film Material	Maximum temperature measured inside the element
Polyester	160°C
Po0 g0 m 13 3620.014 To	-0.014 T54 Tw -16.360

Construction

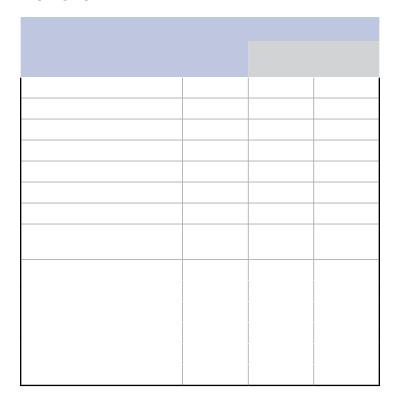


Winding Scheme

Marking


Packaging Quantities

Lead Spacing	Thickness (mm)	Height (mm)	Length (mm)	Bulk Short Leads	Bulk Long Leads	Standard Reel Ø 355 mm	Large Reel Ø 500 mm	Ammo Taped
	3.5	7.5	7.2	2,000	3,000	1,800		2,500
	4.5	9.5	7.2	1,500	2,000	1,400		1,900
5	5.0	10	7.2	1,000	1,500	1,200		1,700
	6.0	11	7.2	2,000	1,000	1,000		1,400
	7.2	13	7.2	1,500	750	800		1,150



Lead Taping & Packaging (IEC 60286-2)

Lead Spacing 5 mm

Taping Specification

Lead Taping & Packaging (IEC 60286-2) cont'd

Ammo Specifications

Dimensions (mm)					
H W T					
360*	340	59			

^{*} Lower dimension available upon request (Maximum 295 mm)

Reel Specifications

Dimensions (mm)					
D H W					
355	30	55 Maximum			

Manufacturing Date Code (IEC-60062)

Y = Year, Z = Month							
Year	Code	Month	Code				
2000	M	January	1				
2001	N	February	2				
2002	Р	March	3				
2003	R	April	4				
2004	S	May	5				
2005	T	June	6				
2006	U	July	7				
2007	V	August	8				
2008	W	September	9				
2009	Χ	October	0				
2010	Α	November	N				
2011	В	December	D				
2012	С						
2013	D						
2014	E						
2015	F						
2016	Н						
2017	J						
2018	K						
2019	L						
2020	M						

KEMET Electronic Corporation Sales Offices

For a complete list of our global sales offces, please visit www.kemet.com/sales.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute - and KEMET specifically disclaims - any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.